一、前言
大模型并非全能,更像是一位刚毕业的博士——理论知识丰富,但在面对具体业务场景时,仍需持续培训、引导,甚至依赖实时资料检索。实现这一目标的关键技术,就是我们今天要聊的:RAG(检索增强生成)、MCP(模型控制协议)以及微调(Finetune)。
RAG、MCP、Finetune也是目前大模型为数不多能够落地的、业务中正在使用的、正在发展的技术与方向。
二、👨💻 程序员的类比:为什么模型需要“赋能”?
当你体验大模型能力后,你会发现它有几个天然的限制:
- 时效性问题:它“毕业”那天之后就不再学习了,新的知识并不知道(比如今天的新闻)。这也是我们前文中说到的缺乏即时反馈与纠错机制。
- 个性化问题:它了解所有人,但不了解你。它不懂你公司的业务,不懂你文档中的术语。
- 控制力问题:它很聪明,但有时候你希望它按照一定规则来回答,比如少说废话、只给关键结果、格式化json输出。
所以,我们需要给大模型进行赋能。
三、🔍RAG:让模型“查资料再回答”
什么是RAG?
RAG是指Retrieval-Augmented Generation, 检索增强搜索,即在回复用户问题前,先进行搜索获取相关资料然后由大模型进行汇总整理输出答案给用户。
RAG 的数据流程图(用户提问 → 检索 → 拼接prompt → 模型回答)
针对R,这里其实是个比较老生常谈的话题。搜索领域,例如大家所知道的Google、Bing、Baidu搜索,技术上例如耳熟能详地关键词检索,使用ElasticSearch构建大数据搜索系统等等。在整个至今的发展历程中,用户已经被“关键词”给“教育”了,用户会主动将自己想要的用一个或一组关键词进行搜索。
回到正题,针对关键词搜索技术,现在也发展出了向量搜索技术。看这里“向量”,是不是想到了我们之前讲Word2Vec时说到的“词向量”,那我们是不是可以将“词”粒度扩展到“句子”维度?那如何获取句子甚至段落向量呢?是不是可以使用BERT来实现一个!!!可以看到,知识逐步串联了起来。向量搜索作为当前 Retrieval 技术的主流方案,能够有效解决同义词、语义相似表达等传统关键词检索无法处理的问题。
当然,Retrieval实际工作中也可以做的更细致,例如召回和排序,也就是Recall和Rerank,ElasticSearch可以作为Recall中的一环。同理向量搜索也可以作为Recall中的一环。
向量搜索中会用到向量数据库,例如Milvus、Qdrant、Faiss等,啊哈,和主流知识结合到一起啦~
针对G,这里也比较容易理解,也是上面概念所介绍的那样,将Retrieval搜索到的资料,通过Prompt(提示词)的方式告诉LLM,由LLM来汇总整理输出答案给用户。
至此,我们大致讲清楚了RAG的工作原理和如何通过R来赋能给LLM,获取更新、更多的资料。
但同时我们还要认识到:RAG这套方式似乎开拓出了一种新的交互方式,由原来“关键词”搜索进化到纯自然语言交互了!
那这套技术可以用来做什么呢?
-
企业知识问答助手
-
智能客服
-
...
四、🎮 MCP:让大模型操作万物
什么是MCP?
MCP(Model Context Protocol,模型上下文协议),用于标准化应用程序向大语言模型提供上下文的方式。
MCP 的调用流程图(用户问题 → 判断是否需要函数 → 参数构造 → 调用 → 回答)
我们来一步步从RAG推导为什么业界需要MCP这套新的概念。
RAG中我们也介绍到了,先搜索然后LLM总结,例如用户问:“公司第四季度的营业额是多少?”,Retrieval到一堆相关片段,我们此处简称为A。然后写一个prompt来让LLM进行回答:
你现在是文档问答助手,请基于参考资料回答用户提出的问题,如果无法回答请说“基于搜索内容无法回答”,不要胡编乱造!
## 参考资料
{{A}}
## 用户问题
{{query}}
那么问题来了,如果我现在有一堆的能力可供大模型使用或需要大模型使用怎么做?
有的小伙伴突然意识到了,我似乎在哪里看到过,这不就是函数调用(Function call)嘛!
函数调用:提供一些函数能力来供大模型基于用户上下文来自主选择与调用。一些函数能力例如:
-
今天北京天气怎么样?
-
1.123213+23424=?
-
1美元兑换多少人民币?
-
帮我查询下我的快递到哪了
-
识别下这个发票的号码
这些问题LLM是无法回答的,但是可以通过调用外部函数(例如之前RAG也是一个函数)来整理并回答的。
它的代码声明方式,例如:
[
{
"type": "function",
"function": {
"name": "search",
"description": "web search,like google search",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "query"
}
},
"required": ["query"]
}
}
},
...
]
到这里,函数调用的基本原理已经清晰了。你可能会问:这种方式不挺好的嘛,为啥还要引出一个MCP呢?
是的,从某种角度来讲,MCP其实是函数调用的进阶版。但更为本质来讲:
MCP是一种协议标准,用于规范化模型与外部系统交互,而 Function Call 是具体实现形式之一。前者强调通用性与可拓展性,后者强调执行能力。
大家可以遵从这种协议,来实现万物互联。
-
百度地图可以提供对应MCP协议实现,来实现全新交互
-
支付宝可以提供对应MCP协议实现,来实现一句话打赏等
至此是不是又理解了LLM未来的重要性了。
五、🛠微调
什么是微调?
微调是从LLM延伸出来的一个概念,之前被称为模型全量训练。由于大模型只需要调整一部分参数,就可以理解新的领域知识或者对某类问题加强理解,所以微调可以理解成模型少量训练。
为什么要微调?
-
私域知识增强理解(例如古籍档案)
-
垂直领域增强(例如医疗领域)
-
优化任务性能(例如文本分类、意图识别)
-
RAG、MCP解决不了,模型认知与理解能力有限
-
...
怎么微调?
训练会常常涉及到Lora,或者是P-Tuning技术,目前主流实现的是Lora。
要不要量化以及你显卡支持的类型,模型参数从原来float32变成float16,再到目前int8、int4等类型,对,就是你理解的传统计算机中的概念。
用哪种训练方式,DP?DDP?或者Deepspeed提供的Zero1~3等。
这几个基本是模型训练最基本概念,至于如何微调,有没有现成的训练框架?
-
LLaMA-Factory
-
MS-SWIFT
-
...
六、🧠 总结:如何选择适合你的方案?
至此,我们大概讲清楚了如何给LLM赋能以及常见的赋能方式,也简单穿插了历史发展,后续我也会单独开一个系列来step by step实现,也欢迎小伙伴们多多提意见与指正。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】