AI大模型应用落地的痛点与策略分析

AI大模型目前正在成为企业转型升级的关键,同时,政策牵引、技术突破和转型需求等因素也驱动B端企业逐步推进了对于AI大模型的深度应用。

AIGC时代的第一波浪潮是大模型的预训练和训练集群规模的不断扩大,紧随其后,第二波浪潮接踵而至,当前和未来将更加聚焦AI大模型的应用落地。算力、网络等基础设施构筑起高效的计算和存储能力,并基于自然语言处理、算法与模型优化等底层技术保障大模型稳定运行,在此基础上,通用大模型能力逐步完善,并基于专业领域数据涌现出垂直行业和细分场景大模型。

AI大模型在B端企业的应用落地离不开数据、算力和算法的协同支撑。其中,数据作为大模型应用的基石,主要提供丰富且高质量的训练和推理素材;算力作为基础的硬件保障,保障大模型的高效训练、优化及实时推理任务;算法作为大模型应用的核心引擎,可以定义并优化大模型的计算逻辑。

数据、算力、算法构成企业AI大模型应用落地的基础支撑

企业落地AI大模型应用的过程就是基于数据、算力和算法的支撑,将大模型能力赋能到业务的过程,但并不意味着拥有了数据、算力和算法,就具备了大模型应用落地的能力,企业还面临从数据到应用、从开发到上线的全面挑战。

01

AI大模型应用落地企业的痛点

对于大部分企业来说,AI大模型应用的实际开发落地面临较高的门槛,从数据的处理到模型的微调,再到算力迁移匹配等各个环节都可能伴随着不同的挑战与痛点。

企业在大模型应用过程中面临数据处理工具不足、端到端解决方案缺乏以及数据隐私与安全难题,对企业大模型落地产生影响;而算力多元化和模型多样化,也给很多企业带来了算力迁移和适配以及模型选择的痛点;此外,大模型应用从开发到部署上线的全流程十分复杂,门槛较高,各环节间的协同不足。

AI大模型应用落地企业的痛点

02

企业落地AI大模型应用的路径与实践

结合国内外优秀案例,AI大模型落地服务厂商可以提供一站式解决方案,覆盖数据准备、模型选择、模型训练、模型定制、模型部署、应用集成、测试验证以及上线运维等各个环节。但在此之前,企业需要明确落地应用场景以及未来效果预期。

AI大模型的真正价值和投资回报率取决于企业本身如何推动AI大模型的落地,也取决于A1大模型技术的应用如何为企业带来业务层面的改变。企业应该尽快评估准备情况,制定人工智能战略与落地路线图,为生成式A1的应用奠定必要的基础,从而在中长期内通过差异化和重点战略来建立竞争优势。

企业落地AI大模型应用的路径

从现阶段市场对于企业AI大模型应用落地服务的实践来看,各类产品和解决方案各有优势也各有需要补足和提升的方面,企业需基于自身实际业务需求选择合适的解决方案。但对于企业来说,需要的更多是聚焦全流程且能力全面的解决方案,真正帮助其解决AI大模型应用开发落地过程中各环节各方面的问题。

Amazon Bedrock是一项完全托管的服务,通过单个API提供来自人工智能公司的高性能基础模型,以及通过安全性、隐私性和负责任的人工智能构建生成式人工智能应用程序所需的一系列广泛功能。使用Amazon Bedrock,开发者可以试验和评估适合业务的基础模型,通过微调和检索增强生成等技术利用企业数据对其进行私人定制,并构建使用企业系统和数据来源执行任务的代理。

使用基础模型构建AI应用

浪潮信息元脑企智EPAI为企业AI大模型落地应用提供端到端开发平台,囊括了全链路、高可用的系列能力工具,能够帮助企业有效降低大模型应用门槛,帮助伙伴提升模型开发效能,打造智能生产力。

元脑企智EPAI支持包括CPU、GPU和各类加速卡在内的20+多元计算芯片,通过上层模型算法和下层基础设施的逻辑解耦,降低企业跨算力平台迁移、多元模型部署适配的试错成本,助力企业轻松跨越AI应用开发与部署门槛,加速智能应用创新。提供数据准备、模型训练、知识检索、应用框架等系列工具,支持调度多元算力和多模算法,帮助企业高效开发部署生成式AI应用。

元脑企智EPAI

九号诶艾科技“荔知星云”作为整合、管理和部署AI能力的平台,起着连接底层算力和上层应用的桥梁作用,为企业智能化提出了更加系统、灵活的解决方案。按照统一底座、统一研发、统一服务和统一管理的建设思路,“荔知星云”以大模型为核心的企业超级大脑,通过融合调控各类传统模型,实现了大小模型的协同并驱的智能化服务:

  • 智能底座层:融合异构算力、异构算法、多模数据,夯实AI技术软硬件基础设施的统一供给能力。

  • 智能研发层:以低门槛、低代码为导向,建立统一的AI工作站,打造大模型数-智-用融合的应用创建能力,满足全领域、全场景的低门槛AI研发需求。

  • 智能服务层:跨部门、跨产品共享的原子服务、组合服务、范式服务,加速人工智能场景落地。

  • 资产运营层:实现数据、算法、模型、服务、场景等智能信息的统一管理、统一运营。

九号诶艾科技“荔知星云”AI中台

03

企业未来落地AI大模型应用的趋势和策略

四大趋势:

1、企业已经感知到大模型的价值,未来将逐步关注ROI

全球75%的CIO增加了2024年的人工智能预算。然而,当谈到生成式AI时,许多组织并没有以正确的方式部署和利用它来释放其潜力。过往在小模型时代,从应用场景到赋能效果都存在清晰可参考的落地路线,然而大模型在这个方面来还没有形成标准案例。

目前,多数企业处在大模型的探索阶段,已经在场景应用上感知到大模型的应用价值。未来企业逐步关注大模型投入的ROI上,即大模型是否能真正帮助企业业务实现降本提效。根据Gartner调研,企业领导者期望到2024年大模型可以替代企业3.8%的岗位,到2026年可以替代8.2%的岗位。

2、多模态大模型应用解决多维度业务问题

在当前的应用中,大语言模型仍是主流,但世界是多模态的,多态协同更符合人类感知与表达方式。

在实际业务场景中,通过引入图片、语音、视频等数据形态,大模型可帮助企业解决更多维度的问题,多模态也是当前业界的重点发展趋势。由于多模态模型可以捕获跨模态的复杂数据关系,将融合不同信息产生更多样化的结果,参与到更深层次的任务中,因此相比单模态模型具有更广阔的应用场景,如医疗健康、交通(交通指挥,自动驾驶等)、安防监控等复杂环境。

3、将RAG与知识图谱相结合,进一步提升AI在复杂查询处理中的性能

当前面向文档类数据检索增强的方法以基于向量数据库通过文本向量化的方式为主,7月微软开源了GraphRAG成为下一个行业热门研究方向。传统的RAG存在一些局限性,如缺乏对实体间复杂关系的理解、固定数量的文本块限制等,将知识图谱引入RAG可以解决这些限制,因为知识图谱提供了一种结构化的方式来表示实体及其关系,使得系统能够:

4、智能体朝单一智能体能力扩展与多智能体协作方向发展

智能体的应用场景广泛,包括但不限于机器人、自动驾驶、智能家居等,现在各类应用中或多或少都在构建让用户去使用的智能体,未来会形成更加复杂的智能体使用情况。扩展单一智能体边界使其能够兼顾多类任务,或者构建多智能体协作机制可能是未来两大落地方向。

其中,多智能体框架开始利用层次结构,使一些智能体专注于高级目标,而其他智能体则负责特定于任务的工作,然后向上报告,从效率提升角度看,多智体系统通过智能调度、自动化流程显著提高工作效率;在创新赋能方面,通过跨领域知识融合、创新模式探索,激发行业创新活力;在生态构建层面,多智能体Al Agent能构建开放、协作的智能生态系统,推动产业链深度融合与价值共创。

策略:

在当今数字化转型的浪潮中,AI大模型的应用已成为企业提升竞争力、优化业务流程的重要手段。面对AI大模型在企业端落地的困难需要基于全流程开发底座来实现以下价值:

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值