大模型干货|Embedding模型是如何训练的?

Embedding模型能够从高维稀疏的数据中提取出低维密集的向量表示,从而捕捉输入数据之间的深层次语义关系。那么你是否好奇Embedding模型是怎么得到的呢?最近我花了点时间总结了下它的训练过程,通常涉及如下几个关键步骤:

初始化嵌入空间:在训练开始之前,为每个符号(如单词、图像特征等)随机初始化一个初始嵌入向量,这些向量通常具有固定长度,并用于表示输入数据的特征。

数据准备:将原始数据转换为嵌入向量表示。在自然语言处理中,可以使用预训练的词向量(如Word2Vec或GloVe)来初始化嵌入层,或者通过神经网络从头生成嵌入向量。

模型训练:然后在监督学习中,使用标签数据进行训练。例如,在文本分类任务中,将标签作为监督信号,通过神经网络模型进行训练,生成词向量。在无监督学习中,可以使用无标签数据进行训练。例如,Word2Vec通过连续词袋模型(CBOW)或跳跃模型(Skip-gram)来学习词向量,捕捉词语之间的语义关系。

在训练过程中,通常会使用优化算法(如随机梯度下降法或Adam优化器)来调整嵌入向量,以最小化损失函数。这其中的损失函数通常用于衡量嵌入向量在任务中的表现,如分类、回归或聚类等。

模型微调和优化:

对于一些复杂的任务,如推荐系统或图像识别,可以先使用预训练的嵌入层作为基础,然后根据具体任务进行微调。例如,在推荐系统中,可以结合用户和物品的稀疏特征进行嵌入层的初始化,再与其他特征一起输入神经网络进行训练。

在一些高级应用中,可以通过对比学习(Contrastive Learning)等方法进一步优化嵌入模型。这种方法通过计算正样本和负样本之间的距离差异来提升嵌入向量的区分能力。

评估与应用

训练完成后,可以通过测试集评估模型性能,并将嵌入向量应用于实际任务中,如分类、聚类、推荐以及RAG系统等场景。

课代表小结:

Embedding模型的训练过程涉及从初始化嵌入向量到通过各种算法优化这些向量,从而提高模型在特定任务中的表现。对于通用领域和专业领域的各种不同数据样本集,一般需要不同的训练策略和优化方法,才能让训练出来的Embedding模型更加优秀。

最后,把主流的一些中文Embedding模型推荐给大家,供您进一步了解和学习:

iic/nlp_gte_sentence-embedding_chinese-large

iic/nlp_corom_sentence-embedding_chinese-base

iic/gte_Qwen2-7B-instruct

BAAI/bge-m3

maidalun/bce-embedding-base_v1

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值