最近,人工智能大模型火得一塌糊涂,各种新名词也层出不穷:RAG、Agent、微调、提示词工程……是不是听着就头大?别担心,今天咱们就用大白话,把这些概念一次性讲清楚,让你彻底搞懂它们是什么、有什么用,以及它们之间的区别和联系。
一、RAG:给大模型装上“外挂知识库”,让它秒变“百事通”
想象一下,你正用一个智能聊天机器人咨询问题。它虽聪明,但毕竟知识有限,很多最新信息或公司内部资料,它可能一问三不知。这时怎么办呢?
RAG(Retrieval-Augmented Generation,检索增强生成)技术就派上用场了。简单来说,RAG 就像给大模型装了一个“外挂知识库”。当用户提问时,RAG 首先 会从这个知识库里快速搜索相关信息, 然后 将搜到的信息与大模型原本的知识结合,生成一个更全面、更准确的回答。
举个更具体的例子: 假设你是一家电商公司的产品经理,想让客服机器人回答用户关于退货政策的问题。公司退货政策常更新,把最新政策写死在机器人里,麻烦又易过时。
有了 RAG,你可以把最新退货政策文档放到一个知识库。当用户问“7天无理由退货,具体怎么操作?”后:
看到了吧?RAG 的妙处在于,它无需重新训练大模型,就能让它拥有最新知识。这就像给大模型配了位“知识秘书”,随时提供最新情报。
二、Agent:能独立思考、规划行动的“智能项目经理”
如果说 RAG 是给大模型配了位“知识秘书”,那么 Agent(智能体)就是给它配了位“智能项目经理”。Agent 不仅能回答问题,还能自主规划、执行复杂任务。
Agent 更像一个独立的“数字大脑”。它能理解你的目标,制定计划,调用各种工具(如 API、软件、数据库),一步步完成任务,最终给你一个满意的结果。
换个更生活化的例子: 假设你想周末去郊游,可以对 Agent 说:“我想周末去郊游,帮我规划一下,最好能避开人群,找个风景优美、适合烧烤的地方。”
Agent 接收指令后:
- 理解目标: 分析你的需求:周末、郊游、避开人群、风景优美、适合烧烤。
- 制定计划: 考虑多个方案,如查询天气预报、搜索周边景点、查看交通路线、比较不同烧烤场地等。
- 调用工具: 使用地图 App 查找景点,使用天气 App 查询天气,使用点评类 App 查看用户评价,甚至使用购票 App 预订门票。
- 执行并反馈:“已为您规划好周末郊游行程:周六前往XX山,那里风景秀丽,游客较少,有专门的烧烤区。已为您查询天气,周六晴,气温适宜。已为您预订好门票……”
Agent 的核心在于自主性和规划能力。它不仅是个工具,更是个能独立思考、完成任务的“数字助手”。
三、微调:让大模型更懂你的“专业课”,成为领域专家
大模型虽强大,但它是个“通才”,在某些专业领域可能不够精通。这时,就需要“微调”(Fine-tuning)来给大模型“开小灶”,让它成为特定领域的专家。
微调,顾名思义,是在预训练好的大模型基础上,用少量特定领域的数据进行“二次训练”。这就像给大模型上了一门“专业课”。通过学习特定领域的数据,大模型能更好地理解和处理该领域的问题。
原理上: 微调并不会完全改变大模型的知识结构,而是在原有基础上,调整部分参数,让模型更适应特定任务。这样做的好处是,既能利用大模型已有的强大能力,又能快速适应新领域,节省大量训练时间和资源。
举个例子: 你是一家律师事务所,想开发一个智能法律咨询系统。你可以用大量法律文书、案例数据对大模型进行微调,让它更懂法律,能更准确地回答用户关于合同纠纷、知识产权等方面的问题,甚至辅助律师起草法律文书。
微调的价值在于,它能让大模型在特定领域变得更专业、更权威。
四、提示词工程:与大模型高效沟通的“艺术”,让它“心领神会”
最后,我们聊聊“提示词工程”(Prompt Engineering)。这可能是最容易被低估,但却至关重要的一环。
提示词工程,简单说,就是如何给大模型“下指令”。一个好的提示词,能让大模型更好理解你的意图,给出更符合预期的回答。这就像与人沟通,清晰、明确的表达才能获得更好的回应。
技巧有很多:
- 明确指令: 告诉大模型你要做什么,例如“写一篇关于……的文章”、“总结以下内容”、“翻译这段话”。
- 提供背景: 告诉大模型相关上下文,例如“假设你是一位……专家”、“这篇文章是写给……读者看的”。
- 限定范围: 告诉大模型输出的格式、长度、风格等,例如“用表格形式呈现”、“不超过500字”、“语气幽默”。
- Few-shot 示例: 给大模型提供几个例子,让它模仿,例如“请按照以下格式写:问题:…… 回答:……”
- 引导式提问: 将复杂问题拆解为多个小问题,逐步引导大模型思考,例如“先分析……的原因,再提出……的建议”。
举个例子: 你想让大模型生成一段产品介绍。
- 糟糕的提示词: “介绍一下这款产品。”
- 优秀的提示词: “假设你是一位资深产品经理,请为一款名为‘智能助手’的AI软件撰写一段产品介绍,面向潜在客户,强调其核心功能(任务管理、日程安排、智能提醒)、优势(提高效率、减少遗漏)和适用场景(职场人士、学生)。字数在200字左右。”
提示词工程的应用场景非常广泛, 不仅仅是问答, 还可以用于代码生成, 创意写作,文本摘要, 机器翻译等等。
提示词工程是“与大模型对话的艺术”。精心设计提示词,就能引导它产出你想要的内容。
RAG、Agent、微调和提示词工程,这四大技术,如同大模型的“四大护法”,各司其职,又协同作战。
- RAG 负责提供外部知识,让大模型“博闻强识”。
- Agent 负责自主规划执行,让大模型“知行合一”。
- 微调 负责深耕专业领域,让大模型“术业专攻”。
- 提示词工程 负责优化沟通,让大模型“心有灵犀”。
在实际应用中,这些技术常结合使用,发挥1+1>2的效果。一个智能客服系统,可能同时用到RAG获取最新产品信息,微调提升对客户问题的理解,Agent处理复杂售后,提示词工程优化沟通。
大模型技术的发展日新月异,这些技术只是冰山一角。未来,随着技术的进步,大模型将更智能、更强大,它们与人类的协作也将更紧密。
这不仅仅是技术的变革,更是生产力、生活方式的变革。让我们拭目以待,迎接一个更智能、更美好的未来!
驾驭大模型的关键,在于理解它们,并学会与它们“对话”。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
大模型就业发展前景
根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。
最后
大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~