0基础小白入门必看:AI大模型基本概念与工具梳理

常见概念

RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。

LLM(Large Language Models)大语言模型。

MoE(Mixture of Experts),混合专家模型(一种模型架构,通过多个“专家”网络并行处理输入数据,然后通过门控机制选择最合适的专家输出结果。MoE模型特别适合于处理大规模数据,在计算效率和性能平衡方面表现出色。

Prompt提示词,在生成式模型中,用于引导模型生成特定内容的输入文本。精心设计的提示词可以显著影响模型输出的质量,适用于文本生成、问答系统等多种任务。

1.5B中的B是Billion(十亿参数),表示模型的参数量级,直接影响计算复杂度和显存占用。

AI大模型

  • openAI公司的AI大模型是chatgpt

  • meta公司的AI大模型是llama

  • google公司的AI大模型是gemma,编程专项是claude系列

  • google deepmind 公司的AI大模型是gemini

  • 埃隆-马斯克公司的模型是grok

  • 幻方量化公司的AI大模型是deepseek

  • 阿里巴巴的AI大模型是通义前问qwen

  • 百度的AI大模型是文心一言

  • 腾讯的AI大模型是元宝

manus 相比较上述的最大区别在于,Manus AI 强调自主执行任务和交付完整成果的能力,而ChatGPT 则更侧重于对话和文本生成。关于manus的使用体验可以参考我之前的使用经验。

AI代码编辑器

1、cursor的下载链接:https://www.cursor.com/downloads,支持mcos、windows、linux等平台使用。不过cursor只赠送部分token,无法无限制使用,要想无限制使用,必须购买,或者不停用新的邮箱注册。

2、微软的copilot:更新vscode至新版本,安装插件github copilot和github copilot chat。全平台支持。

3、字节跳动trae,目前只支持mac和windows平台,linux平台需要预约。

目前只介绍主流的AI代码编辑器,基本提供的功能都一致,根据注释写代码,解码代码等。

大模型管理工具

管理或者快捷部署本地大模型的工具,较为热门的主要包括:Ollama、LM Studio、Xinference。

Ollama是一个简单易用的工具,让你能在自己的电脑上运行大模型,它通过命令行操作,所有的计算和数据都在本地完成,不需要依赖云服务,其也支持部分模型的下载,它支持GGUF格式的模型,用户可以自定义模型的量化和优化。

LM Studio是一款功能强大、易于使用的桌面应用程序,用于在本地机器上实验和评估大型语言模型(LLMs)。它允许用户轻松地比较不同的模型,并支持使用 NVIDIA/AMD GPU 加速计算。

Xorbits Inference是一个性能强大且功能全面的分布式推理框架。可用于各种模型的推理。通过 Xinference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。

另外单独介绍一个开源模型平台,就是Hugging Face。Hugging Face是一个开源平台,里面汇聚了海量的预训练模型,它支持多种模型格式,包括SafeTensor和GGUF。可以快速地复现主要模型的效果。

个人知识库部署工具

一个全栈应用程序,能够将任何文档、资源或内容转换为任何 LLM 都可以在聊天期间用作参考的上下文。此应用程序允许您选择要使用的 LLM 或矢量数据库,并支持多用户管理和权限。可以在其中使用商用现成的 LLM 或流行的开源 LLM 和 vectorDB 解决方案来构建一个私有 ChatGPT,可以在本地运行和远程托管。其他类似工具有dify和RAGFlow,网上看到了一个三者对比的资料,下面列出其对比表格。

工具核心定位核心功能亮点适用场景
AnythingLLM隐私优先的私有化知识库聊天机器人- 支持本地部署,数据不经过第三方服务器; - 多用户权限管理,工作区隔离; - 支持多模型和向量数据库集成。个人或企业对数据隐私要求高的场景,如内部知识管理、敏感数据问答。
Dify大语言模型应用开发平台(LLMOps)- 可视化工作流编排(Chatflow/Workflow); - 内置RAG引擎和Agent框架; - 支持数百种模型与API快速集成。企业级 AI 应用开发,如智能客服、内容生成、自动化数据分析等需快速迭代的场景。
RAGFlow端到端的高质量RAG引擎(深度文档理解)- 复杂文档解析(PDF、影印件等); - 基于模板的文本切片与可视化调整; - 多路召回与重排序优化。需要处理多格式文档且对答案准确性要求高的场景,如法律、医疗、金融领域的知识库问答。

其他的还有Open WebUI、 FastGPT、MaxKB

大模型常见格式

  • pickle
  • SafeTensor
  • GGUF,llama.cpp的作者
  • GGML
  • ONNX

借用Qwen2.5.1-Coder-7B-Instruct-Q3_K_L.gguf这个名字讲解,Qwen表示前问大模型,7B表示参数,Qx - 中的x 表示几位量化。以_0或者_1结尾的方法,如Q4_0,Q4_1,是朴素方法。Qn后面是_K,如Q4_K_M,表示k-quants量化方法,_K后面的字母表示模型大小,_M表示middle,_S表示small。以I开头的方法,比如IQ4_XS,表示i-quants量化方法,Qn后的字母表示模型大小。以T开头的,如TQ1_0,表示三元量化(ternary)。

轻量推理框架

  • llama.cpp:低功耗 + 高兼容性 + int4 支持好。
  • ctransformers:Python API 友好,适合快速测试或服务封装
  • FasterTransformer:对 TensorRT 有一定经验者可选,性能极致。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

<think>嗯,用户想了解工业4.0基础知识和入门指南的技术基础。首先,我需要明确工业4.0的核心概念,然后梳理出关键的技术组成部分。根据之前的引用,工业4.0涉及数字化、物联网、数字孪生等技术。需要分点解释,确保结构清晰。 首先,工业4.0的定义是什么?应该从第四次工业革命的角度切入,说明其智能化和互联化的特点。接下来,核心技术部分,引用中提到数字孪生、物联网、大数据分析等,这些都是关键点。要结合用户提供的引用内容,比如引用3提到的数字孪生在预测性维护中的应用,需要详细说明。 然后,技术架构方面,用户可能想知道如何分层构建工业4.0系统。引用3提到了智能资产、边缘层和IT/OT层,可以按照这三个层次来展开。每个层次的功能和例子需要具体,比如边缘层的实时数据处理,引用中的例子是否适用? 应用场景部分,用户可能希望了解实际案例,比如智能工厂、预测性维护等。引用3中的预测性维护是一个好的例子,应该包含进去。同时,引用1提到的知识图谱如何帮助理解标准,可以提及结构化数据的作用,但可能属于进阶内容,是否放在基础里? 最后,学习路径部分,用户需要入门资源,引用2提到的VisionPro教程可能相关,但需要判断是否属于核心技术基础。可能需要推荐一些通用资源,如标准化文档和在线课程,同时引用1的知识图谱作为学习工具。 需要确保回答符合用户需求,避免过于深入,保持基础性。检查每个技术点的解释是否清晰,是否引用了正确的来源。例如,数字孪生的应用在引用3中,物联网和大数据在引用1和3中都有涉及。确保引用标识正确,自然融入段落末尾。 可能用户后续会问到具体技术如何实施,或者工业4.0的挑战,但当前问题只需基础知识。需要生成相关问题,如核心技术有哪些,如何实施数字孪生等,引导用户深入。确保问题回答内容相关,并且基于提供的引用。</think># 工业4.0技术基础入门指南 ## 一、工业4.0核心定义 工业4.0是第四次工业革命的实践范式,其本质是通过**智能互联技术**实现生产系统的数字化、网络化和智能化。前三代工业革命相比,其核心区别在于: $$ \text{工业4.0} = \text{CPS(信息物理系统)} + \text{物联网} + \text{云计算} + \text{人工智能} $$ 这种融合使生产系统具备自主决策能力[^1]。 ## 二、五大核心技术基础 1. **数字孪生技术** - 通过虚拟映射实现物理实体的实时监控 - 应用案例:预测性维护系统(要求响应时间<50ms时需部署在边缘层)[^3] 2. **工业物联网(IIoT)** - 设备连接密度:$N \geq 1000$节点/平方公里 - 通信协议:OPC UA、MQTT、TSN 3. **大数据分析** - 数据维度:$3V$(Volume/Velocity/Variety)向$5V$扩展(新增Value/Veracity) - 实时分析时延要求:$t \leq 100ms$ 4. **人工智能算法** - 主要应用:$f(x)=w·x+b$型线性回归用于质量预测 - 深度学习用于异常检测(准确率$\geq 98\%$) 5. **网络物理安全** - 采用零信任架构:$P_{\text{安全}}=1-\prod_{i=1}^n(1-p_i)$ - 加密算法:量子抗性Lattice-based Cryptography ## 三、典型技术架构 ```mermaid graph TD A[物理层] -->|传感器数据| B(边缘层) B -->|预处理数据| C[云平台] C -->|分析结果| D{决策系统} D -->|控制指令| A ``` 该架构支持毫秒级响应,在预测性维护场景中可降低30%停机时间[^3] ## 四、实施路径建议 1. **数字化评估**:使用TRL(技术就绪度)模型,评估指标: $$ \text{TRL} = \sum_{i=1}^9 w_i·x_i,\quad \sum w_i=1 $$ 2. **试点项目选择**: - 优先选择ROI>15%的流程 - 建议从SCADA系统升级入手 3. **人才培养**: - 需掌握工业总线协议(如Profinet) - 推荐学习OPC UA规范(IEC 62541) ## 五、典型应用场景 1. **智能工厂**: - 设备OEE(整体效率)提升公式: $$ \text{OEE} = \text{可用率} \times \text{性能率} \times \text{良品率} $$ 2. **供应链优化**: - 采用数字主线(Digital Thread)技术 - 实现需求预测误差率$\leq 5\%$ 3. **产品服务化**: - 通过IoT数据构建服务模型: $$ S(t) = \int_{0}^{t} \lambda(\tau)d\tau + \sigma W_t $$ [^1]: 工业4.0知识图谱 [^3]: 数字孪生部署指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值