常见概念
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。
LLM(Large Language Models)大语言模型。
MoE(Mixture of Experts),混合专家模型(一种模型架构,通过多个“专家”网络并行处理输入数据,然后通过门控机制选择最合适的专家输出结果。MoE模型特别适合于处理大规模数据,在计算效率和性能平衡方面表现出色。
Prompt提示词,在生成式模型中,用于引导模型生成特定内容的输入文本。精心设计的提示词可以显著影响模型输出的质量,适用于文本生成、问答系统等多种任务。
1.5B中的B是Billion(十亿参数),表示模型的参数量级,直接影响计算复杂度和显存占用。
AI大模型
-
openAI公司的AI大模型是chatgpt
-
meta公司的AI大模型是llama
-
google公司的AI大模型是gemma,编程专项是claude系列
-
google deepmind 公司的AI大模型是gemini
-
埃隆-马斯克公司的模型是grok
-
幻方量化公司的AI大模型是deepseek
-
阿里巴巴的AI大模型是通义前问qwen
-
百度的AI大模型是文心一言
-
腾讯的AI大模型是元宝
manus 相比较上述的最大区别在于,Manus AI 强调自主执行任务和交付完整成果的能力,而ChatGPT 则更侧重于对话和文本生成。关于manus的使用体验可以参考我之前的使用经验。
AI代码编辑器
1、cursor的下载链接:https://www.cursor.com/downloads,支持mcos、windows、linux等平台使用。不过cursor只赠送部分token,无法无限制使用,要想无限制使用,必须购买,或者不停用新的邮箱注册。
2、微软的copilot:更新vscode至新版本,安装插件github copilot和github copilot chat。全平台支持。
3、字节跳动trae,目前只支持mac和windows平台,linux平台需要预约。
目前只介绍主流的AI代码编辑器,基本提供的功能都一致,根据注释写代码,解码代码等。
大模型管理工具
管理或者快捷部署本地大模型的工具,较为热门的主要包括:Ollama、LM Studio、Xinference。
Ollama是一个简单易用的工具,让你能在自己的电脑上运行大模型,它通过命令行操作,所有的计算和数据都在本地完成,不需要依赖云服务,其也支持部分模型的下载,它支持GGUF格式的模型,用户可以自定义模型的量化和优化。
LM Studio是一款功能强大、易于使用的桌面应用程序,用于在本地机器上实验和评估大型语言模型(LLMs)。它允许用户轻松地比较不同的模型,并支持使用 NVIDIA/AMD GPU 加速计算。
Xorbits Inference是一个性能强大且功能全面的分布式推理框架。可用于各种模型的推理。通过 Xinference,你可以轻松地一键部署你自己的模型或内置的前沿开源模型。
另外单独介绍一个开源模型平台,就是Hugging Face。Hugging Face是一个开源平台,里面汇聚了海量的预训练模型,它支持多种模型格式,包括SafeTensor和GGUF。可以快速地复现主要模型的效果。
个人知识库部署工具
一个全栈应用程序,能够将任何文档、资源或内容转换为任何 LLM 都可以在聊天期间用作参考的上下文。此应用程序允许您选择要使用的 LLM 或矢量数据库,并支持多用户管理和权限。可以在其中使用商用现成的 LLM 或流行的开源 LLM 和 vectorDB 解决方案来构建一个私有 ChatGPT,可以在本地运行和远程托管。其他类似工具有dify和RAGFlow,网上看到了一个三者对比的资料,下面列出其对比表格。
工具 | 核心定位 | 核心功能亮点 | 适用场景 |
---|---|---|---|
AnythingLLM | 隐私优先的私有化知识库聊天机器人 | - 支持本地部署,数据不经过第三方服务器; - 多用户权限管理,工作区隔离; - 支持多模型和向量数据库集成。 | 个人或企业对数据隐私要求高的场景,如内部知识管理、敏感数据问答。 |
Dify | 大语言模型应用开发平台(LLMOps) | - 可视化工作流编排(Chatflow/Workflow); - 内置RAG引擎和Agent框架; - 支持数百种模型与API快速集成。 | 企业级 AI 应用开发,如智能客服、内容生成、自动化数据分析等需快速迭代的场景。 |
RAGFlow | 端到端的高质量RAG引擎(深度文档理解) | - 复杂文档解析(PDF、影印件等); - 基于模板的文本切片与可视化调整; - 多路召回与重排序优化。 | 需要处理多格式文档且对答案准确性要求高的场景,如法律、医疗、金融领域的知识库问答。 |
其他的还有Open WebUI、 FastGPT、MaxKB
大模型常见格式
- pickle
- SafeTensor
- GGUF,llama.cpp的作者
- GGML
- ONNX
借用Qwen2.5.1-Coder-7B-Instruct-Q3_K_L.gguf这个名字讲解,Qwen表示前问大模型,7B表示参数,Qx - 中的x 表示几位量化。以_0或者_1结尾的方法,如Q4_0,Q4_1,是朴素方法。Qn后面是_K,如Q4_K_M,表示k-quants量化方法,_K后面的字母表示模型大小,_M表示middle,_S表示small。以I开头的方法,比如IQ4_XS,表示i-quants量化方法,Qn后的字母表示模型大小。以T开头的,如TQ1_0,表示三元量化(ternary)。
轻量推理框架
- llama.cpp:低功耗 + 高兼容性 + int4 支持好。
- ctransformers:Python API 友好,适合快速测试或服务封装
- FasterTransformer:对 TensorRT 有一定经验者可选,性能极致。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~