【AI大模型】LLM解决时间序列问题之——语言模型+时序模型的对齐与融合建模

前言

直接基于预训练的大语言模型(LLM)解决时间序列问题,是一个最近的重要研究点。之前的研究中,主要尝试用LLM进行zero-shot learning,或者基于LLM的参数进行finetune。随着研究的深入,研究者发现,单独的一个LLM模型,或者单独的用LLM在时序数据上finetune,并不能取得最优的效果。因此除了上述优化之外,另一些工作尝试同时引入LLM构建文本模型和时序模型,并对两种模态的信息进行对齐,提升时序预测效果。

今天就给大家总结几篇最近一段时间,使用语言模型+时序模型进行融合建模的最新工作。

1基于Attention的文本时序融合

Taming Pre-trained LLMs for Generalised Time Series Forecasting via Cross-modal Knowledge Distillation 提出一种文本+时序模型双分支的结构,都从LLM进行参数初始化,并进行跨模态的表征对齐。整体模型包含两个分支,一个分支是文本模型,使用预训练的GPT2;另一个分支是时间序列模型,用来对时间序列数据进行编码,也使用预训练的GPT2。对于输入的多元时间序列数据,首先使用iTransformer中的方法,将每个变量的序列看成一个token,生成多元时间序列的表征。对于文本模型侧,首先使用PCA对word embedding做一个降维,生成cluster。为了实现时间序列和文本信息的对齐,使用一个multi-head attention,以时间序列表征作为Query,文本模型的cluster表征作为Key和Value计算融合表征。

文本模型和时间序列模型这两个分支都进行时间序列预测。为了对齐两个模态,文中引入了两个约束。第一个约束是,让文本模型和时间序列模型的隐层表征的距离最小;另一个约束是让两个模态的预测结果尽可能相同。在finetune阶段,文本模型侧不更新参数,时间序列模型测使用LoRA进行高效finetune。

2Patch表征和Token表征隐空间对齐

S2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting 也是类似的建模方法,结合prompt对时序模型和文本模型进行对齐。本文提出,将时间序列的patch表征和大模型的word embedding在隐空间对齐,然后检索出topK的word embedding,作为隐式的prompt。具体做法为,使用上一步生成的patch embedding,和语言模型中的word embedding计算余弦相似度,选择topK的word embedding,再将这些word embedding作为prompt,拼接到时间序列patch embedding的前方。由于大模型word embedding大多,为了减少计算量,先对word embedding做了一步映射,映射到数量很少的聚类中心上。文中使用GPT2作为语言模型部分,除了position embedding和layer normalization部分的参数外,其余的都冻结住。优化目标除了MSE外,还引入patch embedding和检索出的topK cluster embedding的相似度作为约束,要求二者之间的距离越小越好。

3原型Embedding对齐文本和时序

Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning 提出一种方法是训练几个文本原型向量,并让其对齐时间序列数据表征,最后将这些原型向量作为prompt加入到时间序列输入中。文中提出的文本原型向量名为TCTP。如下图所示,其核心是在LLM的token embedding表征空间中,学一些可学习的embedding,实现一种对原始token embedding聚类的目的。同时,通过对比学习的手段,拉近这些原型embedding和时间序列表征之间的距离,作为一个中间桥梁对齐token embedding和时间序列embedding。

具体的模型结构图如下。TCTP的优化目标有两个。一方面,要求每个token embedding和距离其最近的TCTP embedding尽可能小,实现将TCTP嵌入到token embedding的表征空间。另一方面,对于一个时间序列,使用patch+linear生成的时序表征,和各个TCTP计算距离,选择距离最小的K个TCTP,通过对比学习拉近时序表征和这K个TCTP的距离,实现时序表征到TCTP表征的对齐,进而对齐到预训练语言模型的token表征空间。

在得到TCTP表征后,将其作为soft prompt,拼接到时间序列输入的前面,整体输入到预训练的语言模型中。语言模型输出的表征接一个可学习的线性层,映射到最终的预测结果。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>好的,我现在需要帮助用户评估他们提供的几个论文题目中哪些相对简单容易完成。首先,我需要回顾用户之前的问题和回复历史。用户之前询问过人工智能专业研究生论文的简单方向,我给出了10个建议,比如预训练模型微调、传统算法优化等,并附带了具体思路和工具。现在用户列出了7个新题目,希望我分析哪些相对容易完成。 首先,我需要逐个分析每个题目的复杂程度。考虑因素包括数据获取难度、技术成熟度、所需资源(如计算资源)、创新点的实现难度以及现有工具和框架的支持情况。 28. 使用预训练LLM进行时间序列预测:时间序列分析通常需要处理结构化数据,而LLM主要擅长文本。可能需要将时间序列数据转换为适合LLM的格式,比如文本描述或特定编码。这方面可能有一些研究,但需要调整模型结构,数据预处理可能复杂,而且LLM的训练成本高,如果没有足够的资源可能困难。 29. 机器学习读取模拟仪表:这涉及到计算机视觉,可能需要收集大量仪表图像,标注数据。传统CV方法或微调现有模型如YOLO、ResNet可能可行。如果仪表类型单一,环境可控,数据获取和标注相对容易,但实际应用中可能有光照、角度等问题需要处理,可能需要较多工程调试。 30. 基于深度学习的急性淋巴细胞白血病检测:医学影像分析通常需要专业的数据集,获取可能困难,涉及隐私问题。需要医疗机构合作,或者使用公开数据集。模型可能需要较高的准确率,医学领域的模型验证和解释性要求高,可能需要较多领域知识,伦理审查也可能增加复杂性。 31. 使用LLM的交互式多模态感知:多模态融合本身复杂,加上交互性可能需要设计用户交互实验,整合文本、图像、语音等多种输入,实时处理。需要处理多模态对齐问题,技术栈较广,实现和评估难度大,创新点要求高,可能需要较多资源。 32. 持续开放集物体识别:开放集识别要求模型识别未知类别,同时持续学习新类别。这涉及到增量学习和开放集检测的结合,技术上有挑战,需要处理灾难性遗忘问题,设计有效的更新策略,实验设计复杂,需要大量不同阶段的数据集,实现难度较高。 33. 大型语言模型的持续模型编辑:持续编辑需要在不重新训练的情况下更新模型知识,可能涉及参数调整或外部记忆模块。需要深入理解LLM架构,实验可能需要大量计算资源,评估编辑后的模型效果和稳定性,技术较新,研究资料可能较少,实现难度大。 34. 机器学习的量子嵌入:量子机器学习结合了量子计算和传统ML,需要量子计算的基础知识,可能涉及量子算法的模拟或实际量子硬件。目前量子计算资源有限,多数研究停留在理论或小规模实验,实际应用难度大,对数学和物理要求高,适合有相关背景的学生,否则入门困难。 接下来,我需要对比这些分析,找出哪些题目在数据、技术、资源方面门槛较低。例如,题目29如果使用公开的仪表数据集,或者自行收集少量数据,结合已有CV模型微调,可能相对可行。题目28如果有现成的时间序列转换方法和预训练LLM可用,可能可以快速实验,但需注意数据适配。题目30如果公开数据集可用,并且有医学合作方,可能可行,否则数据获取困难。题目34需要量子计算资源,可能最难。 然后,我需要参考之前给用户的建议,比如推荐预训练模型微调、传统算法优化、数据增强等方向。题目28属于预训练模型的应用,但时间序列可能较复杂;题目29属于CV应用,可能属于轻量化部署或传统模型改进;题目30属于医学图像检测,可能数据难但可用公开数据集;而其他题目如31、32、33、34复杂度较高。 最后,需要综合判断,将题目按难度排序,指出哪些相对简单,并给出理由,比如数据易获取、技术成熟、工具支持好等。同时提醒用户注意潜在挑战,比如数据标注、计算资源等。</think>根据技术复杂度、数据获取难度和实现可行性,对您提供的题目进行排序分析如下(从易到难): --- ### **相对容易完成的题目** #### 1. **29. Machine Learning to learn to read analog gauges(机器学习读取模拟仪表)** - **优势**: - **数据可控**:可自行拍摄仪表图像构建小规模数据集(需标注刻度值),或使用公开工业检测数据集(如[Roboflow Universe](https://universe.roboflow.com/)中的仪表检测数据) - **技术成熟**:基于YOLOv5/PP-YOLO实现目标检测定位,配合OpenCV进行透视校正和读数解析 - **创新点设计**: - 改进刻度识别:融合霍夫圆检测传统图像处理算法 - 光照鲁棒性增强:通过随机亮度调整进行数据增强 - **工具推荐**:LabelImg标注工具,PyTorch Lightning框架 #### 2. **30. Acute Lymphoblastic Leukemia Detection Based on Deep Learning(基于深度学习的急性淋巴细胞白血病检测)** - **优势**: - **公开数据集可用**:如[C-NMC 2019](https://competitions.codalab.org/competitions/20395)提供白血病细胞显微图像 - **模型复用性强**:在EfficientNet或ViT上微调分类模型,可快速实现基线性能 - **创新方向**: - 改进困难样本学习:针对细胞形态相似性设计对比损失函数 - 轻量化部署:通过知识蒸馏压缩模型便于临床部署 - **注意点**:需严格验证模型可解释性(如Grad-CAM热力图分析) #### 3. **28. Time-Series Forecasting with Pre-Trained LLMs(使用预训练LLM时间序列预测)** - **优势**: - **免于模型训练**:直接利用LLM(如GPT-3或LLaMA)的序列建模能力 - **数据格式转换成熟**:将时间序列转化为文本描述(例如:"2023年1月: 销量=1200; 2月: 销量=1350...") - **创新空间**: - 设计时序到文本的编码模板(如引入周期性标记) - 对比传统方法(ARIMA/LSTM)LLM预测效果 - **工具推荐**:Hugging Face Transformers库 + Darts时间序列工具包 --- ### **中等难度的题目** #### 4. **34. Quantum Embedding for Machine Learning(机器学习的量子嵌入)** - **可行性条件**: - **模拟优先**:使用PennyLane或Qiskit在经典计算机模拟量子嵌入 - **简化任务**:在MNIST/CIFAR-10上验证量子神经网络(QNN)的嵌入效果 - **挑战**:需要量子计算基础理论,实际量子硬件访问困难 #### 5. **32. Continual Open Set Object Recognition(持续开放集物体识别)** - **可实现路径**: - 在CIFAR-100/ImageNet-1K子集上构建增量学习实验环境 - 结合[OWML](https://github.com/sgvaze/osr_closed_set_all_you_need)框架实现开放集检测 - **难点**:需平衡新旧类别知识保留未知类别拒识 --- ### **高难度题目(慎选)** #### 6. **33. Lifelong Model Editing for Large Language Models(大语言模型的持续编辑)** - **瓶颈**: - 需深入理解LLM权重更新机制(如[MEMIT](https://arxiv.org/abs/2206.06520)方法) - 需构建复杂评估体系(事实一致性、副作用检测) #### 7. **31. Interactive Multimodal Perception using Large Language Models(基于LLM的交互式多模态感知)** - **复杂度来源**: - 需同时处理视觉-语言-动作的实时交互(如机器人场景) - 依赖多模态对齐数据集(如[ALFRED](https://askforalfred.com/)) --- ### **推荐选择策略** 1. **优先选择29/30/28**: - 以**29号题目**为例,完整研究流程: ```mermaid graph TD A[拍摄100张仪表图像] --> B[LabelImg标注指针位置] B --> C[训练YOLOv5检测模型] C --> D[OpenCV透视变换校正] D --> E[HSV颜色空间分割指针] E --> F[角度-数值映射输出] ``` - 创新点可设计为:**"融合语义分割的精细化读数校正"** 2. **避坑建议**: - 避免需要特殊硬件支持的题目(如量子嵌入需真实量子计算机) - 谨慎选择涉及持续学习/多模态交互的方向(实验周期易失控) 3. **工具链参考**: - 29号题目:Ultralytics YOLOv5 + OpenCV + Flask部署 - 30号题目:EfficientNet-B3 + Grad-CAM可视化 + Streamlit交互界面
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值