让智能体人人可用。
迈入2024年,大模型的竞赛终于翻开了新的一页。
从卷文本长度,卷多模态,到开卷智能体,各家都在试图建立自己的潮流。有人掀起价格战,就有人踊跃跟战。但对于大模型赛道的未来而言,更关键的,是如何打造自身独一无二的特性,如何让技术创造真正的价值。
5月30日,2024百度移动生态万象大会在苏州举办,会上百度再秀肌肉,发布百度搜索、文心一言App、百度文库、文心智能体平台等能力升级。从“智慧数据智能体”、“Ai志愿助手”再到“家庭教育利器”,百度智能体正在以全新的姿态与势头,试图撬动更多技术的力量,进一步降低大模型的使用门槛,让智能体人人可用。
正如百度集团资深副总裁、百度移动生态事业群组总经理何俊杰在大会现场所表示的,智能体就是生产力,这是每一个人放大杠杆,撬动红利,成为超级个体的时代机遇。
百度移动生态事业群组总经理何俊杰
而百度移动生态的新机会,就藏在这一个又一个超级个体机遇的故事里。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
当智能体成为“育娃神器”
“请帮我生成一个绘本,教育孩子不能过度沉迷手机”,如果在百度文库输入这样的指令,只需要3秒钟,你就可以得到一个题为《小明的手机之旅》的画本文案,还能生成有声视频画本。在这个绘声绘色的故事里,小明因为沉迷手机,错过了许多风景,曲折的故事情节,让孩子很快沉浸其中,在寓教于乐的过程中,与家长达成和解。
如果不是AI智能体的出现,人们很难想象,有一天可以用百度文库育儿。
这也仅仅是百度移动生态重构故事里的冰山一角。
出差买机票前,人们习惯于查看不同航司的准点率,但手动检索费时费力,且不一定能获得最准确的答案。百度干脆在手机里装进了一位“数据分析师”——智慧数据智能体,简单来说,通过AI加持,可以一步到位搞定数据查询与分析,并且通过图表的形式呈现各航司的准点率,免去了人们在不同App间跳转的麻烦。
还有让不少家长感到苦恼的孩子高考报志愿问题,他们的难点在于,“害怕给孩子选不好,耽误孩子的前程”,这也一度让市面上相关的推荐业务火热。
百度把这个任务同样交给了智能体,比如你只需要输入“600分能上什么大学”,就会获得相应的推荐列表。当然,每个孩子的情况都有所不同,Ai志愿助手可以针对性的记住考生的信息,家长和学生可以追问更多、更复杂的问题,甚至是问宿舍有没有空调,食堂是否好吃这种细枝末节,获得更深入的解答。
通过百度移动生态,AI智能体正在向人们的生活渗透。
而这一过程最大的优点在于,让技术变革本身变得不再冰冷与刻板,不再仅仅是一种活跃在人工智能行业里的小雀跃,而是走入普罗大众身边,让上班族、家长、学生党都能信手拈来。
自百度躬身入局大模型以来,其也在不断开发各类智能体工具,在这次的万象大会现场,百度推出全新产品“橙篇”,被定位为业内首个集专业知识检索和问答、超长图文理解和生成、深度编辑和整理、跨模态自由创作能力于一身的综合性AI Native产品,进一步让创作者拥有更自由便捷的创作能力。
为大模型竞赛练兵
自大模型竞赛开启以来,外界频频发出这样的疑问,中美的技术差距到底有多大?国内玩家的机会在哪里?答案无一例外都会指向应用。
一个核心的论调是,中国有最复杂的应用市场及开发者生态,有最广阔的用户群体,这些规模效应可以让中国AI赛道弯道超车。
多元的应用,加速了中国AI市场的爆发,也能跑出下一个新机会。
而百度一直以来都是坚定的应用信奉者,百度创始人、董事长兼首席执行官李彦宏在几天前的巴黎VivaTech AI盛会现场再度强调,“很多人都在关注GPT-5的发布时间,但我更感兴趣的是,哪些应用可以充分利用大语言模型的所有能力。”
何俊杰在这一次移动生态大会现场也表示,大模型不应该只向内“卷算力”“卷参数”,更应该向外“卷场景”“卷问题”。
大模型应用的火,正前所未有的燃烧起来。创新工场董事长兼零一万物CEO李开复在不久前的媒体采访中直言,中国AI大模型已经进入到落地为王的阶段,今年会迎来“大模型应用爆发元年”。
事实上,互联网与移动互联网普及几年后,微信与抖音等应用才逐步诞生,最终成为影响数亿人生活的超级应用。对于今天的大模型竞赛亦如是,距离这个时代的AI超级应用诞生仍需要一定时间。
行业内外都在用自己的方式加速这一进程,例如不久前声势浩大的大模型价格战。在不少行业人士看来,当大厂们拿出真金白银的补贴力度,自然会加速生态的演进,提升行业活力,催生更多应用更快速爆发。不久前,百度也官宣加入补贴阵营,将旗下两大主力模型免费。
某种程度上看,百度不仅是参赛者,也是大模型时代的陪练师,在打造自己的AI应用群之外,其更是为行业提供更低门槛的基础设施,并亲自跑通了一套标准化路径。
这一次发布会上露面的文心智能体平台,就是这样的载体,从开发、到分发,再到变现,其给出了一条完整的链路。也就是说,开发者基于文心智能体平台,能快速完成分发与获益。
其最大的特点是易开发、有分发、有钱赚。文心智能体平台支持“一句话开发智能体”,一个账号可创建50个智能体,并支持开发者调用自定义插件实现指定功能。
平台从“智能体分发”渠道打通发力,已经可以把智能体分发到包括百度搜索在内的全百度产品场域。百度搜索是天然的流量池,每天请求量高达几十亿次,在分发上具有优势,可以很大程度上解决应用开发后的冷启动问题。
据百度方面披露,目前文心智能体平台已经有16万多名开发者和超5万家企业入驻,覆盖上百个应用场景。其中,既有文案专家、读书专家、企业培训执行专员,这些由个人开发的小而美的智能体,也有OPPO、新加坡旅游局这类企业、机构开发的智能体。
百度移动生态会跑出下一个超级应用吗?
互联网与移动互联网时代诞生了众多几亿、十几亿流量的超级app,当前留给参赛者的讨论是,属于AI时代的超级应用究竟长什么样?
一种观点认为,大模型应用不是迭代型产品,而是颠覆式,它甚至有可能会颠覆传统PC、手机等一切旧有终端,在交互上创造全新的体验。
这也给开发者提出了更出挑战,如何站在未来看今天,创造属于下一个时代的产品。百度给出的解答是,一切仍旧从用户需求出发,当实际解决了当前人们的痛点,一切变革就会自然发生。
就像何俊杰所言,“哪里有需求,哪里就有智能体。”
那么接下来的问题是,这个超级应用,最有可能在哪里萌发?
实际上,百度移动生态有着天然的土壤。例如百度文库,其汇集了12亿+的专业内容资源和4亿+学习资料,以及1.4亿的AI用户数,并且AI功能使用次数已突破15亿;百度搜索更是已经陪伴用户20多年,每天满足用户数十亿次的搜索需求,现在百度搜索摇身一变,成为AI普惠的最好窗户,目前,百度搜索有11%的搜索结果是由AI生成的,在搜索生态内,越来越多的智能体正在为用户 提供更好的内容和服务。
很难讲,这些用户们用脚投票的结果,会不会诞生下一个AI时代的超级应用,但至少,百度移动生态已经在让AI触手可及,现实可用,已经有越来越多的家长、职场打工人、学生党,在用AI育娃、办公和求学。
甚至,人们还可以通过这些智能体,重新获得这个时代的红利。在百度方面看来,智能体就是生产力,而百度会为创作者们提供两大红利:技术红利与流量红利。站在巨人的肩膀上,普通人不仅不会在这个时代被AI淘汰,甚至可以借助AI,找到自己的新机会。
对于百度自身而言,这也是属于百度的iPhone时刻,让百度有机会创造自己的App Store,借助一个个超级个体的力量,为百度移动生态注入更多新鲜血液。
据不久前百度2024年Q1财报显示,百度人工智能云营收增速进一步加速到12%,“人工智能技术每个季度为公司创造数亿元的增量收入。”李彦宏表示。
百度移动生态未来的AI落地往什么方向走,则要取决于文心大模型的发展。此前有报道称,百度将于明年发布文心大模型5.0版本,很多人猜想其在多模态、低延时、参数等方面可能有显著提升。这对百度搜索、百度文库、文心一言APP、百度APP等移动生态应用来说,是一大利好,比如在百度搜索中引入可与现实世界互动的搜索能力,将极大地拓展百度搜索的应用边界。相信这些应用也能推动模型的进步。
AI百度业务的重构,正在推动百度核心的搜索业务以及云服务的发展,并且预计人工智能云业务在未来几个季度能保持强劲的收入增长势头。人们有理由为百度移动生态的未来,投以更大的期待。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓