csv 文档向量化详细过程

读取文件

我这里使用的是随便找的一份 csv 文件,只是为了示范,没有什么实际的用处。需要注意的是内容中不要有特殊字符或者🤫之类的表情包,否则在处理的时候会报错,内容如下:

image.png

基本的文档处理参数如下:

chunk_overlap = 50
chunk_size = 250
embed_model = 'm3e-large'
vs_type = 'fassi'
zh_title_enhance = False

详细解释如下:

  1. chunk_overlap = 50: chunk_overlap 是指在进行文本分块时,每个块之间的重叠量。在处理文本时,通常将文本分成多个块以便更有效地处理,而重叠量可以确保在相邻的块之间不会丢失重要的信息。在这个例子中,重叠量为 50,表示相邻块之间会有 50 个字符的重叠。
  2. chunk_size = 250chunk_size 是指每个文本块的大小。将长文本分成适当大小的块有助于更高效地处理文本数据。在这里每个文本块的大小为 250 个字符。
  3. embed_model = 'm3e-largeembed_model 是指用于文本嵌入(embedding)的模型。文本嵌入是将文本数据转换成向量的过程,通常用于表示文本数据。在这里,使用了名为 m3e-large 的嵌入模型。
  4. vs_type = 'fassi'vs_type 是向量数据库名称。
  5. zh_title_enhance = Falsezh_title_enhance 是一个布尔值,用于指示是否要增强中文标题。当设置为 True 时,表示对中文标题进行增强处理;当设置为 False 时,表示不进行增强处理。

加载自定义的 Loader 处理 csv 文件

我们这里使用的是 <class 'langchain.document_loaders.csv_loader.CSVLoader'> 来处理 csv 文件内容,详细代码如下,将每一行的内容封装成给你一个 Document 类 ,然后将所有行对应的 Document 添加到一个列表中即可完成对 csv 文件的内容处理,具体 Document 类 介绍如下:

Document(page_content=content, metadata=metadata)

  • page_content 就是每一行的内容,其实就是将当前行的列名和内容使用 “:” 进行拼接,然后将所有的列的内容用"\n"拼接而成的字符串。
  • metadata 记录了当前所在行以及 csv 文件的路径。

我这里以前两行为例列举内容如下:

 [ Document(     page_content=': 0\ntitle: 加油~以及一些建议\nfile: 2023-03-31.0002\nurl: https://github.com/imClumsyPanda/langchain-ChatGLM/issues/2\ndetail: 加油,我认为你的方向是对的。\nid: 0',      metadata={'source': 'D:\\Langchain-Chatchat-torch2-240402\\knowledge_base\\samples\\content\\test_files/langchain-ChatGLM_closed.csv', 'row': 0} ),  Document(     page_content=': 1\ntitle: 当前的运行环境是什么,windows还是Linux\nfile: 2023-04-01.0003\nurl: https://github.com/imClumsyPanda/langchain-ChatGLM/issues/3\ndetail: 当前的运行环境是什么,windows还是Linux,python是什么版本?\nid: 1',      metadata={'source': 'D:\\Langchain-Chatchat-torch2-240402\\knowledge_base\\samples\\content\\test_files/langchain-ChatGLM_closed.csv', 'row': 1} ) ]

def __read_file(self, csvfile: TextIOWrapper) -> List[Document]:
    docs = []

    csv_reader = csv.DictReader(csvfile, **self.csv_args)  # type: ignore
    for i, row in enumerate(csv_reader):
        try:
            source = (
                row[self.source_column]
                if self.source_column is not None
                else self.file_path
            )
        except KeyError:
            raise ValueError(
                f"Source column '{self.source_column}' not found in CSV file."
            )
        content = "\n".join(
            f"{k.strip()}: {v.strip()}"
            for k, v in row.items()
            if k not in self.metadata_columns
        )
        metadata = {"source": source, "row": i}
        for col in self.metadata_columns:
            try:
                metadata[col] = row[col]
            except KeyError:
                raise ValueError(f"Metadata column '{col}' not found in CSV file.")
        doc = Document(page_content=content, metadata=metadata)
        docs.append(doc)

    return docs

向量化

随便找一个可以使用的向量模型,我这里使用的是 m3e-large ,另外还有找自己合适的向量数据库,我这里使用的是 fassi ,将上面处理好的 chunk 都经过向量化存入 fassi 中,后面结合大模型即可即可进行文档的问答和检索。

这里将每一行的文本都转换为一个 1024 长的向量,然后存入到 fassi 向量数据库中,下面是我查询的展示效果。通过提问,可以将文档内的内容回答出来,并且将答案的出处都标识出来。

image.png

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

以下是一个简单的使用Scala和Spark进行CSV数据分类的例子: ```scala import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} import org.apache.spark.ml.classification.RandomForestClassifier import org.apache.spark.sql.SparkSession // 创建SparkSession val spark = SparkSession.builder() .appName("CSV Classification") .master("local[*]") .getOrCreate() // 读取CSV文件并创建DataFrame val data = spark.read .option("header", "true") .option("inferSchema", "true") .csv("path/to/your/file.csv") // 定义要使用的特征列和标签列 val featureCols = Array("feature1", "feature2", "feature3") val labelCol = "label" // 对标签列进行编码 val labelIndexer = new StringIndexer() .setInputCol(labelCol) .setOutputCol("indexedLabel") .fit(data) // 将特征列组合成一个向量列 val assembler = new VectorAssembler() .setInputCols(featureCols) .setOutputCol("features") // 划分训练集和测试集 val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3)) // 实例化随机森林分类器 val rf = new RandomForestClassifier() .setLabelCol("indexedLabel") .setFeaturesCol("features") .setNumTrees(10) // 训练模型 val pipeline = new Pipeline() .setStages(Array(labelIndexer, assembler, rf)) val model = pipeline.fit(trainingData) // 对测试集进行预测 val predictions = model.transform(testData) // 输出预测结果 predictions.select("indexedLabel", "prediction", "features").show() ``` 注意:这只是一个简单的例子,实际情况需要根据具体数据和分类问题进行调整。此外,还需要导入Spark和MLlib相关的库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值