AI大模型学习路线终极指南:一篇文章,大模型学习教程非常详细,助你行动转变命运!

1. 打好基础:数学与编程
数学基础
  • 线性代数:理解矩阵、向量、特征值、特征向量等概念。

    • 推荐课程:Khan Academy的线性代数课程、MIT的线性代数公开课。
  • 微积分:掌握导数、积分、多变量微积分等基础知识。

    • 推荐课程:Khan Academy的微积分课程、MIT的微积分公开课。
  • 概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。

    • 推荐课程:Khan Academy的概率与统计课程、Coursera的“Probability and Statistics”课程。
编程基础
  • Python:作为AI领域的主要编程语言,Python是必须掌握的。

    • 推荐课程:Codecademy的Python课程、Coursera的“Python for Everybody”系列。
  • 数据结构与算法:理解基本的数据结构(如数组、链表、树、图)和算法(如排序、搜索、动态规划)。

    • 推荐课程:Coursera的“Data Structures and Algorithms”系列、LeetCode进行算法练习。
2. 入门机器学习
理论学习
  • 经典书籍:

    • 《机器学习》 - 周志华
    • 《Pattern Recognition and Machine Learning》 - Christopher Bishop
  • 在线课程:

    • Coursera的“Machine Learning”课程(Andrew Ng教授)
    • Udacity的“Intro to Machine Learning”课程
实践项目
  • Kaggle:参加Kaggle的入门竞赛,实战练习机器学习算法。
  • 项目实现:尝试实现一些经典的机器学习算法,如线性回归、逻辑回归、决策树、随机森林等。
3. 深入深度学习
理论学习
  • 经典书籍:

    • 《深度学习》 - Ian Goodfellow, Yoshua Bengio, Aaron Courville
  • 在线课程:

    • Coursera的“Deep Learning Specialization”系列(Andrew Ng教授)
    • Fast.ai的“Practical Deep Learning for Coders”课程
实践项目
  • 框架学习:学习深度学习框架如TensorFlow和PyTorch。

    • 推荐资源:TensorFlow和PyTorch的官方文档和教程。
  • 实现经典模型:尝试实现一些经典的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。

4. 探索大模型
理论学习
  • Transformer架构:理解Transformer架构的基本原理,这是大模型(如GPT-3、BERT等)的基础。

    • 推荐资源:论文《Attention is All You Need》、Jay Alammar的Transformer可视化博客。
  • 预训练模型:了解预训练和微调的概念。

    • 推荐资源:Hugging Face的博客和文档。
实践项目
  • Hugging Face:使用Hugging Face的Transformers库,加载和微调预训练模型。

    • 推荐资源:Hugging Face的官方教程和示例代码。
  • 项目实现:尝试使用预训练模型进行文本生成、情感分析、问答系统等任务。

5. 进阶与应用
高级课程
  • 强化学习:深入学习强化学习,理解策略优化、Q-learning等概念。

    • 推荐课程:Coursera的“Reinforcement Learning Specialization”课程、Udacity的“Deep Reinforcement Learning”课程。
  • 论文阅读:定期阅读最新的AI研究论文,跟踪领域前沿。

    • 推荐资源:arXiv、Google Scholar。
实践项目
  • 开源项目:参与开源项目,贡献代码,提升实战能力。

    • 推荐平台:GitHub。
  • 实战应用:尝试将大模型应用于实际问题,如自动驾驶、智能客服、医疗诊断等。

6. 社区与资源
参与社区
  • 论坛与讨论组:加入AI相关的论坛和讨论组,如Reddit的Machine Learning社区、Stack Overflow等。
  • 线下活动:参加AI相关的线下活动和会议,如NeurIPS、ICML等。
持续学习
  • 博客和播客:关注AI领域的博客和播客,如Towards Data Science、Data Skeptic等。
  • 在线资源:定期浏览AI相关的在线资源和新闻,保持对领域动态的了解。
结语

img

自学AI大模型需要扎实的基础知识、系统的学习路线和持续的实践与探索。希望这条学习路线能为新手小白们提供一个清晰的方向,帮助大家更好地进入和发展在AI大模型领域。祝大家学习顺利,早日成为AI领域的专家!

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值