大模型部署工程师进阶指南:从零开始部署Ollma和Qwen大模型

我们平时使用的ChatGPT、kimi、豆包等Ai对话工具,其服务器都是部署在各家公司的机房里,如果我们有一些隐私数据发到对话中,很难保证信息是否安全等问题,如何在保证数据安全的情况下,又可以使用大语言模型,Ollma(哦拉玛)可以告诉你答案!

这是一个保姆级的教程,从下载到成功运行Qwen2.5大模型,更适合没有玩过Ollma的小白宝宝哦~

1. Ollma 是什么?

一句话介绍:一个可以让你在本地启动并运行大型语言模型的工具!

Ollma是一个开源的大模型服务工具,他可以让你在一行代码不写的情况下,在本地通过一条命令即可运行大模型

Ollma会根据电脑配置,自动选择用CPU还是GPU运行,如果你的电脑没有GPU,会直接使用CPU进行运行(可能有点慢)

2. 安装教程

Ollma官网:[https://ollama.com/]

模型仓库:[https://ollama.com/library]

2.1 首先去官网下载

从主页点击下载,直接跳转到了当前系统所兼容的下载界面,点击download,一键下载

2.2 下载好之后安装

博主的电脑是Mac,下载好之后,直接把压缩包解压,然后移动到应用程序中即可,其他操作系统,参考这个文档:

[Windows 下的安装与配置](https://datawhalechina.github.io/handy-ollama/#/C2/2.%20Ollama%20%E5%9C%A8%20Windows%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)``[Linux 安装Ollma ](https://datawhalechina.github.io/handy-ollama/#/C2/3.%20Ollama%20%E5%9C%A8%20Linux%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)``[Docker 安装 Ollma](https://datawhalechina.github.io/handy-ollama/#/C2/4.%20Ollama%20%E5%9C%A8%20Docker%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)   

下载好之后,打开,当这个帅气的小羊驼显示在你的任务栏中的时候,说明已经启动成功了!

image.png

2.3 测试一下

打开命令行,输入ollama -h看到以下界面,就可以进行下一步,操作了~

3. 导入开源Qwen 2.5 - 0.5B 大模型

3.1 去模型仓库搜索模型

我们在上面提到的Ollma模型仓库中找到最新的千问大模型

点进去,界面如下:

3.2 加载模型

将上面的命令复制到命令行,回车执行!等待下载

等进度100%了,即可使用模型

3.3 使用模型

在命令行中,即可开启与千问大模型的对话,看到这里,是不是感觉很简单,快去点个赞!

输入/bye方可结束对话。

都看到这里了,点个赞再走吧!码字实属不易呀。

4. 部署webUI可视化对话

本文使用FastAPI 部署Ollma可视化页面,简单4步即可

1、克隆仓库

git clone https://github.com/AXYZdong/handy-ollama  

克隆完成进入目标目录:

cd handy-ollama/notebook/C6/fastapi_chat_app  

2、安装依赖

pip install -r requirements.txt  
pip install 'uvicorn[standard]'  

3、修改app.py 代码

输入vim websocket_handler.py命令(确保你在fastapi_chat_app目录下先)更改model代码

#!/usr/bin/env python  
# -*- coding: utf-8 -*-  
import ollama  
from fastapi import WebSocket  
  
async def websocket_endpoint(websocket: WebSocket):  
    await websocket.accept()  
    user_input = await websocket.receive_text()  
  
    stream = ollama.chat(  
        model='qwen2.5:0.5b',  
        messages=[{'role': 'user', 'content': user_input}],  
        stream=True  
    )  
  
    try:  
        for chunk in stream:  
            model_output = chunk['message']['content']  
            await websocket.send_text(model_output)  
    except Exception as e:  
        await websocket.send_text(f"Error: {e}")  
    finally:  
        await websocket.close()  

4、运行模型

输入命令:

uvicorn app:app --reload``   

即可开始对话:

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

03-08
<think>好的,我现在需要回答用户关于Ollama的问题。首先,用户提到了Ollama的本地部署大模型运行,还引用了几个相关的引用内容。我需要先理解用户的问题到底是什么。用户最后问的是“我想ollma 请问ollma”,看起来可能是在问Ollama是什么,或者如何使用它?根据引用内容,用户可能想了解Ollama的基本信息、本地部署方法、常用命令以及数据安全方面的优势。 首先,我需要整理引用中的信息。引用[1]提到Ollama可以帮助在保证数据安全的情况下使用大语言模型,适合处理隐私数据。引用[2]讲的是通过Docker部署llama3模型,引用[3]列出了一些常用命令,比如删除模型查看版本。用户可能想知道Ollama是什么,如何安装,常用命令,以及它的优势,比如数据安全。 接下来,我需要按照用户的要求结构化回答。系统级指令要求使用中文,数学公式用$...$,独立公式用$$...$$,但这里可能不需要数学公式。用户的问题涉及技术步骤,可能需要分点说明,确保结构清晰。同时,生成相关问题部分需要根据内容提出相关问题。 我需要确认每个步骤的正确性,比如安装Ollama的方法是否有不同途径,Docker的使用是否正确。引用[2]中提到的命令是使用Docker执行ollama并运行llama3模型,可能需要说明Docker的基本使用前提。常用命令部分,引用[3]提到的删除模型查看版本是否正确,是否有其他常用命令需要补充。 另外,数据安全方面,引用[1]强调Ollama本地部署避免隐私数据外泄,这一点需要突出,说明与在线服务的区别。可能还需要提到支持的模型,如Qwen2.5、llama3等,用户如何选择模型参数。 在生成相关问题的时候,需要围绕Ollama的功能、部署、命令、安全性应用场景来提问,确保问题相关且有深度,比如如何选择模型参数、与在线服务的对比、常见错误处理等。 最后,检查是否符合格式要求:不使用Markdown,分点回答,引用标识在引用段落末尾自然添加,比如在讲解数据安全时引用[^1],部署步骤引用[^2],命令部分引用[^3]。确保LaTeX语法正确,不过当前内容可能不需要数学公式,但需要留意用户是否有数学相关的问题,这里可能不需要处理。 总结回答结构: 1. Ollama是什么:本地部署大模型工具,保证数据安全[^1] 2. 核心功能:模型下载、运行、管理,支持多种模型 3. 应用场景:处理隐私数据,替代在线服务 4. 安装步骤:Docker部署示例[^2] 5. 常用命令:运行模型、删除模型、查看版本 6. 优势:数据安全,灵活选择模型[^2] 相关问题部分需要涵盖安装、命令、模型选择、安全优势、应用场景、错误处理等。</think>Ollama 是一款支持本地部署大语言模型的工具,允许用户在本地运行如 Qwen2.5、Llama3 等模型,无需依赖云端服务,从而保障数据隐私安全[^1]。 ### 分步说明 1. **Ollama 的核心功能** - **本地化运行**:模型数据均在本地计算机处理,避免敏感信息外泄。 - **灵活管理模型**:支持下载、删除、切换不同参数的模型(如 8B、70B 参数量版本)[^2]。 - **命令行操作**:通过简单命令控制模型运行,例如启动 Llama3 模型: ```bash docker exec -it ollama ollama run llama3 ``` 2. **安装与部署** - 使用 Docker 快速部署(需提前安装 Docker 环境): ```bash docker run -d -p 11434:11434 --name ollama ollama/ollama ``` 此命令会创建容器并开放端口 11434 用于模型交互[^2]。 3. **常用操作命令** - **运行模型**:`ollama run <模型名称>`(如 `llama3`) - **删除模型**:`ollama rm <模型名称>` - **查看版本**:`ollama version`[^3] 4. **数据安全优势** 与 ChatGPT 等在线工具不同,Ollama 的本地部署确保数据无需上传第三方服务器,适合医疗、金融等隐私敏感领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值