DeepSeek本地部署全攻略:详细步骤与方法,轻松实现AI落地

DeepSeek本地部署详细指南

随着人工智能技术的飞速发展,本地部署大模型的需求也日益增加。DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私。以下是详细的DeepSeek本地部署流程。

一、环境准备
(一)硬件需求
  • 最低配置:CPU(支持AVX2指令集)+ 16GB内存 + 30GB存储。
  • 推荐配置:NVIDIA GPU(RTX 3090或更高)+ 32GB内存 + 50GB存储。
(二)软件依赖
  • 操作系统:Windows、macOS或Linux。
  • Docker:如果使用Open Web UI,需要安装Docker。
二、安装Ollama

Ollama是一个开源工具,用于在本地轻松运行和部署大型语言模型。以下是安装Ollama的步骤:

  1. 访问Ollama官网:前往Ollama官网,点击“Download”按钮。

  2. 下载安装包:根据你的操作系统选择对应的安装包。下载完成后,直接双击安装文件并按照提示完成安装。

  3. 验证安装:安装完成后,在终端输入以下命令,检查Ollama版本:```
    ollama --version

    如果输出版本号(例如`ollama version is 0.5.6`),则说明安装成功。
    
    
    
三、下载并部署DeepSeek模型

Ollama支持多种DeepSeek模型版本,用户可以根据硬件配置选择合适的模型。以下是部署步骤:

选择模型版本:
  • 入门级:1.5B版本,适合初步测试。
  • 中端:7B或8B版本,适合大多数消费级GPU。
  • 高性能:14B、32B或70B版本,适合高端GPU。

在这里插入图片描述

下载模型:

打开终端,输入以下命令下载并运行DeepSeek模型。例如,下载7B版本的命令为:

ollama run deepseek-r1:7b


如果需要下载其他版本,可以参考以下命令:

ollama run deepseek-r1:8b  # 8B版本
ollama run deepseek-r1:14b # 14B版本
ollama run deepseek-r1:32b # 32B版本


启动Ollama服务:

在终端运行以下命令启动Ollama服务:

ollama serve


服务启动后,可以通过访问 http://localhost:11434 来与模型进行交互。

四、使用Open Web UI(可选)

为了更直观地与DeepSeek模型进行交互,可以使用Open Web UI。以下是安装和使用步骤:

  1. 安装Docker:确保你的机器上已安装Docker。
  2. 运行Open Web UI
    在终端运行以下命令安装并启动Open Web UI:
docker run -d -p 3000:8080 \
  --add-host=host.docker.internal:host-gateway \
  -v open-webui:/app/backend/data \
  --name open-webui \
  --restart always \
  ghcr.io/open-webui/open-webui:main


安装完成后,访问 http://localhost:3000,选择deepseek-r1:latest模型即可开始使用。

五、性能优化与资源管理
  • 资源分配:根据硬件配置选择合适的模型版本。较小的模型(如1.5B到14B)在标准硬件上表现良好,而较大的模型(如32B和70B)需要更强大的GPU支持。
  • 内存管理:确保系统有足够的内存和存储空间,以避免运行时出现资源不足的问题。
六、常见问题及解决方法
  • 模型下载超时:如果在下载模型时出现超时问题,可以尝试重新运行下载命令。
  • 服务启动失败:确保Ollama服务已正确安装并启动。如果服务启动失败,可以尝试重启Ollama服务。
七、总结

通过上述步骤,你可以在本地成功部署DeepSeek模型,并通过Ollama或Open Web UI与模型进行交互。本地部署不仅能够保护数据隐私,还能根据需求灵活调整模型参数,满足不同场景下的使用需求。如果你在部署过程中遇到任何问题,可以在评论区留言,我们将一起解决。

希望这篇教程能帮助你顺利部署DeepSeek模型,开启高效开发的新旅程!

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值