YOLO全系列讲解!(论文以及项目归纳)

YOLO系列

一、物体检测评估指标

1. IOU

1)IOU的概念
  • IOU的定义

    • IOU(Intersection over Union): 是一种测量两个边界框重叠度的指标,即交集与并集的比值。

    • 计算方式:

      交集面积并集面积\frac{交集面积}{并集面积}并集面积交集面积,取值范围为0到1,值越大表示重叠度越高。

2)IOU的应用
  • 在物体检测中的应用
    • 作用: 评估模型预测的边界框与真实边界框之间的重叠程度,是物体检测等任务中的重要评估指标。
    • 应用实例: 在模型预测中,IOU用于判断预测框与真实框的匹配程度,从而评估模型性能。

2.TP、FP、TN、FN

1)TP
  • 定义: True Positive,表示正确地将正例预测为正例。
  • 条件:
    • IOU(Intersection over Union)满足预值,通常默认为0.5。
    • 置信度满足预值,即预测为物体的可能性高。
  • 举例: 预测一个物体,其预测框与真实框的IOU大于0.5,且置信度高于设定的阈值,则此预测为TP。
2)FP
  • 定义: False Positive,表示错误地将负例(背景)预测为正例。
  • 条件:
    • 置信度满足,但IOU不满足预值。
    • 或置信度和IOU都满足,但预测类别与真实类别不同。
  • 举例:
    • 预测一个不存在的物体,或者预测框与任何真实框的IOU都小于0.5,但置信度很高,则此预测为FP。
    • 预测框与某个真实框的IOU大于0.5,但预测类别错误,如将人脸预测为狗脸,也为FP。
3)TN
  • 定义: True Negative,表示正确地将负例(背景)预测为负例。
  • 说明: 在物体检测任务中,背景通常不需要特别预测,因此TN不是主要关注的指标。
4)FN
  • 定义: False Negative,表示错误地将正例预测为负例,即漏检。
  • 举例: 真实存在一个物体,但没有任何预测框与其匹配,或者预测框的置信度低于阈值,导致该物体未被检测出,则为FN。
  • 重要性: FN是检测任务中需要特别关注的指标,因为它代表了漏检的情况,可能对实际应用产生严重影响。

3. 精度与召回率

1)精度
  • 定义:精度(Precision)表示预测为正样本的实例中,真正为正样本的比例。
  • 计算方式 P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP + FP} Precision=TP+FP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛定谔的脂肪层

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值