YOLO系列
一、物体检测评估指标
1. IOU
1)IOU的概念
-
IOU的定义
-
IOU(Intersection over Union): 是一种测量两个边界框重叠度的指标,即交集与并集的比值。
-
计算方式:
交集面积并集面积\frac{交集面积}{并集面积}并集面积交集面积,取值范围为0到1,值越大表示重叠度越高。
-
2)IOU的应用
- 在物体检测中的应用
- 作用: 评估模型预测的边界框与真实边界框之间的重叠程度,是物体检测等任务中的重要评估指标。
- 应用实例: 在模型预测中,IOU用于判断预测框与真实框的匹配程度,从而评估模型性能。
2.TP、FP、TN、FN
1)TP
- 定义: True Positive,表示正确地将正例预测为正例。
- 条件:
- IOU(Intersection over Union)满足预值,通常默认为0.5。
- 置信度满足预值,即预测为物体的可能性高。
- 举例: 预测一个物体,其预测框与真实框的IOU大于0.5,且置信度高于设定的阈值,则此预测为TP。
2)FP
- 定义: False Positive,表示错误地将负例(背景)预测为正例。
- 条件:
- 置信度满足,但IOU不满足预值。
- 或置信度和IOU都满足,但预测类别与真实类别不同。
- 举例:
- 预测一个不存在的物体,或者预测框与任何真实框的IOU都小于0.5,但置信度很高,则此预测为FP。
- 预测框与某个真实框的IOU大于0.5,但预测类别错误,如将人脸预测为狗脸,也为FP。
3)TN
- 定义: True Negative,表示正确地将负例(背景)预测为负例。
- 说明: 在物体检测任务中,背景通常不需要特别预测,因此TN不是主要关注的指标。
4)FN
- 定义: False Negative,表示错误地将正例预测为负例,即漏检。
- 举例: 真实存在一个物体,但没有任何预测框与其匹配,或者预测框的置信度低于阈值,导致该物体未被检测出,则为FN。
- 重要性: FN是检测任务中需要特别关注的指标,因为它代表了漏检的情况,可能对实际应用产生严重影响。
3. 精度与召回率
1)精度
- 定义:精度(Precision)表示预测为正样本的实例中,真正为正样本的比例。
- 计算方式: P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP + FP} Precision=TP+FP