Mamba超绝创新!搭上异常检测准确率99%+!一区秒了!

今天给大家推荐一个创新Max,且不卷的idea:基于Mamba做异常检测!

以往的异常检测方法,以基于CNN、Transformer为主。但CNN在处理长距离依赖性方面存在困难,Transformer虽然表现出色,但由于其自注意力机制,计算复杂度较高。而Mamba,则完美弥补了这两者的缺陷,在有效处理长距离依赖性同时,具有线性复杂度,计算资源需求少!在提高模型检测精度和速度方面,一骑绝尘!比如模型ALMRR便在准确率高达99.1%的同时,参数量和计算复杂度大幅降低!

更为重要的是,传统的方法早已卷成红海,Mamba作为近来的新贵,尚在发展期,可挖掘的空间还很广!

为让大家能够紧跟领域前沿,找到更多idea启发,我给大家梳理了多种创新思路,且提供了源码!

论文原文+开源代码需要的同学看文末

论文:MambaAD:Exploring StateSpace Models for Multi-class Unsupervised Anomaly Detection
内容

该论文介绍了MambaAD,这是一个基于Mamba框架的多类别无监督异常检测方法。MambaAD结合了预训练编码器和Mamba解码器,并在多尺度上使用局部增强状态空间(LSS)模块,有效地捕获长程和局部信息,在六个不同的异常检测数据集上达到了最先进的性能,同时保持了较低的模型参数和计算复杂度。

论文:ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement
内容

该论文提出了一种名为ALMRR的新型无监督异常检测方法,该方法通过特征重建和细化来定位工业纹理图像中的异常。ALMRR利用Mamba框架进行特征重建,并通过特征细化模块提高异常定位的精确度。在训练阶段,模型通过添加人工模拟的异常来增强对异常的先验知识。

论文:Joint Selective State Space Model and Detrending for Robust Time Series Anomaly Detection
内容

该论文提出了一种基于选择性状态空间模型(S6)和多阶段去趋势机制的时间序列异常检测方法,旨在解决长期依赖建模和非平稳数据泛化问题,以其在捕捉长期依赖关系方面的能力而闻名,而去趋势机制则用于减轻非平稳数据中的显著趋势成分,以提高模型的泛化能力。

论文:End-to-End Learning-Based Study on the Mamba-ECANet Model for Data Security Intrusion Detection
内容

该论文提出了一种基于深度学习的端到端数据安全入侵检测系统,该系统整合了Mamba模型和ECANet模型,并通过端到端学习进行训练和优化。Mamba模型用于初步数据特征提取,而ECANet模型通过注意力机制进一步优化特征选择,增强了模型对重要特征的关注。

 关注下方《人工智能学起来》

回复“MMAD”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

### Mamba 异常错误处理解决方案 在讨论 Mamba 的异常问题及其解决方案之前,需了解其核心架构特点以及可能引发异常的原因。以下是针对 U-MambaMamba-UNet 中可能出现的常见异常问题及其对应的解决策略。 #### 1. 数据预处理阶段的异常 数据预处理是医学图像分割中的重要环节,任何不致的数据输入可能导致模型训练失败或预测结果不佳。例如,如果输入图像尺寸不符合预期标准,则会触发形状匹配错误。 - **解决方案**: 确保所有输入图像经过标准化处理,统大小和通道数。可以使用以下代码片段对图像进行调整: ```python import cv2 def preprocess_image(image_path, target_size=(256, 256)): image = cv2.imread(image_path) resized_image = cv2.resize(image, target_size) normalized_image = resized_image / 255.0 # 归化到 [0, 1] return normalized_image ``` 此过程有助于减少因数据格式不符而引起的运行时错误[^1]。 --- #### 2. 训练过程中梯度爆炸/消失 深度学习模型(尤其是深层结构如 U-Mamba)容易受到梯度不稳定的影响。这通常表现为损失函数值突然增大或减小至零。 - **解决方案**: 采用梯度裁剪技术以稳定优化器的行为;或者尝试降低初始学习率并启用自适应学习率调度机制。具体实现如下所示: ```python from torch.nn.utils import clip_grad_norm_ def train_step(model, optimizer, loss_fn, inputs, targets, max_grad_norm=1.0): model.train() outputs = model(inputs) loss = loss_fn(outputs, targets) optimizer.zero_grad() loss.backward() # 应用梯度裁剪防止爆炸 clip_grad_norm_(model.parameters(), max_grad_norm) optimizer.step() return loss.item() ``` 通过上述方式可有效缓解梯度相关问题[^3]。 --- #### 3. GPU 内存不足导致程序崩溃 当批量大小设置过大或模型参数过多时,GPU 显存可能会耗尽,进而中断训练流程。 - **解决方案**: 逐步缩小批处理规模直至适配硬件资源限制为止;另外也可以考虑混合精度训练方法来节省内存消耗。 ```python # 使用 PyTorch 自带工具开启自动混合精度支持 scaler = torch.cuda.amp.GradScaler() for data in dataloader: with torch.cuda.amp.autocast(): output = model(data['image']) loss = criterion(output, data['label']) scaler.scale(loss).backward() # 缩放后的反向传播 scaler.step(optimizer) # 更新权重前先缩放步长 scaler.update() # 动态更新比例因子 ``` 这种方法不仅提高了效率还增强了鲁棒性[^2]。 --- #### 4. 测试阶段输出质量低下 即使完成正常训练周期之后仍可能存在某些样本被误分类的情况——即所谓的“异常值”。这些情况往往源于复杂的背景干扰或是目标边界模糊不清等因素所致。 - **解决方案**: 利用后处理手段改善最终呈现效果,比如形态学操作填补孔洞、平滑边缘轮廓等措施均能显著提升视觉体验感。 ```python import numpy as np from scipy.ndimage import binary_fill_holes def postprocess_mask(mask_array, threshold=0.5): binarized_mask = (mask_array >= threshold).astype(np.uint8) filled_mask = binary_fill_holes(binarized_mask).astype(np.uint8) return filled_mask ``` 执行此类修正步骤能够帮助消除不必要的噪声影响。 --- ### 总结 综上所述,对于 Mamba 架构下的各种潜在异常状况均有相应的预防与修复对策可供采纳实施。实际应用当中应根据具体情况灵活选用最合适的办法加以应对处置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值