使用深度学习模型(图像分割模型)unet处理无人机航拍图中的石油泄漏检测分割。完成对无人机航拍图石油泄漏分割数据集 发的分割任务
文章目录
如何处理呢
无人机航拍图石油泄漏分割数据集
数据集——1268张RGB图像(1920*1080像素),分为油、水和其他(包括船只、码头、建筑物等)三个类别。
数据采集:无人机(Dronematrix YACOB和DJI Mavic2)配备高分辨率相机,在2021年9月至2023年9月期间拍摄,涵盖了不同的环境条件、光照和天气情况。
使用深度学习模型(图像分割模型)处理无人机航拍图中的石油泄漏检测问题。语义分割任务,目标是将图像中每个像素分类为:油
、水
或 其他
三类。
—
使用 U-Net 模型(或其改进版本如 U-Net++、Attention U-Net 等)来进行多类别图像语义分割。以下是完整流程:
✅ 1. 数据集结构要求
确保你的数据集组织如下:
dataset/
├── images/
│ ├── train/
│ │ ├── img001.png
│ │ └── ...
│ ├── val/
│ └── test/
└── masks/
├── train/
│ ├── img001_mask.png
│ └── ...
├── val/
└── test/
标注说明:
- mask 图像是单通道灰度图(uint8),像素值对应类别:
- 0 → 水(water)
- 1 → 油(oil)
- 2 → 其他(other)
📦 2. 安装依赖库
pip install torch torchvision scikit-learn matplotlib albumentations segmentation_models_pytorch
🧱 3. 数据增强与加载器构建
import os
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
# 自定义Dataset类
class OilSpillDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = os.listdir(image_dir)
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_name = self.images[idx]
img_path = os.path.join(self.image_dir, img_name)
mask_path = os.path.join(self.mask_dir, img_name.replace(".jpg", "_mask.png"))
image = np.array(Image.open(img_path).convert("RGB"))
mask = np.array(Image.open(mask_path), dtype=np.uint8)
if self.transform:
augmentations = self.transform(image=image, mask=mask)
image = augmentations["image"]
mask = augmentations["mask"]
return image, mask.long()
数据增强示例(训练时使用):
transform_train = A.Compose([
A.Resize(height=512, width=512),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.ColorJitter(p=0.3),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
])
构建Dataloader:
train_dataset = OilSpillDataset(
image_dir='dataset/images/train',
mask_dir='dataset/masks/train',
transform=transform_train
)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=4)
🤖 4. 模型选择与构建(使用 Segmentation Models PyTorch)
我们使用 U-Net + ResNet34 编码器
import segmentation_models_pytorch as smp
import torch
# 使用预训练的UNet模型
model = smp.Unet(
encoder_name="resnet34",
encoder_weights="imagenet",
in_channels=3,
classes=3 # 3个类别:油、水、其他
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
⚙️ 5. 损失函数与优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
🏋️ 6. 训练循环
from tqdm import tqdm
num_epochs = 20
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for images, masks in tqdm(train_loader):
images = images.to(device)
masks = masks.to(device)
outputs = model(images)
loss = criterion(outputs, masks)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}")
📊 7. 验证与可视化
验证过程类似训练,只需将 model.eval()
并关闭梯度计算。
可视化预测结果:
import matplotlib.pyplot as plt
def visualize_prediction(image, mask, pred):
plt.figure(figsize=(10, 5))
plt.subplot(1, 3, 1)
plt.title("Image")
plt.imshow(image.permute(1, 2, 0).cpu().numpy())
plt.subplot(1, 3, 2)
plt.title("True Mask")
plt.imshow(mask.cpu().numpy(), cmap='gray')
plt.subplot(1, 3, 3)
plt.title("Predicted Mask")
plt.imshow(pred.argmax(0).cpu().numpy(), cmap='gray')
plt.show()
📁 8. 推理部署(单张图片测试)
from torchvision import transforms
def predict_image(model, image_path, device):
model.eval()
image = Image.open(image_path).convert("RGB")
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
output = model(image_tensor)
pred_mask = torch.softmax(output, dim=1).argmax(dim=1).squeeze(0).cpu().numpy()
return image, pred_mask
📈 9. 性能评估指标(可选)
可以使用以下指标进行评估:
- IoU (Intersection over Union)
- Dice Coefficient
- Pixel Accuracy
from sklearn.metrics import jaccard_score, confusion_matrix
def calculate_metrics(y_true, y_pred):
iou = jaccard_score(y_true.flatten(), y_pred.flatten(), average='macro')
cm = confusion_matrix(y_true.flatten(), y_pred.flatten())
return iou, cm
📦 10. 模型导出(ONNX)
dummy_input = torch.randn(1, 3, 512, 512).to(device)
torch.onnx.export(model, dummy_input, "oil_spill_unet.onnx", export_params=True)
以上代码仅供参考,