基于MATLAB代码模糊控制自动泊车系统 平行泊车,模糊控制算法

基于MATLAB代码模糊控制自动泊车系统
平行泊车,模糊控制算法
附带说明文档和.fis和.m文件
在这里插入图片描述
以下是基于 MATLAB 的模糊控制自动泊车系统实现代码,适用于平行泊车场景。模糊控制算法通过规则推理生成车辆的转向角和速度,从而实现平滑、稳定的自动泊车。


1. 系统概述

1.1 平行泊车问题
  • 车辆需要从初始位置(车道中间)移动到目标停车位中。
  • 控制输入包括:
    • 前轮转角(Steering Angle)
    • 车速(Velocity)
1.2 模糊控制设计
  • 输入变量

    • ( e_x ): 车辆中心与目标停车位中心的横向误差。
    • ( e_y ): 车辆中心与目标停车位中心的纵向误差。
    • ( \theta ): 车辆航向角与目标停车位方向的角度偏差。
  • 输出变量

    • ( \delta ): 前轮转角。
    • ( v ): 车速。
  • 模糊规则

    • 根据误差和角度偏差,推导出合适的控制输入。

2. MATLAB 实现

2.1 模糊控制器设计
function [delta, v] = fuzzy_parking_controller(ex, ey, theta)
    % 输入参数:
    % ex: 横向误差
    % ey: 纵向误差
    % theta: 航向角偏差

    % 创建模糊推理系统
    fis = newfis('ParkingFIS');

    % 添加输入变量:横向误差 ex
    fis = addvar(fis, 'input', 'ex', [-2, 2]);
    fis = addmf(fis, 'input', 1, 'NL', 'trimf', [-2, -2, -1]); % Negative Large
    fis = addmf(fis, 'input', 1, 'NS', 'trimf', [-2, -1, 0]);  % Negative Small
    fis = addmf(fis, 'input', 1, 'ZE', 'trimf', [-1, 0, 1]);   % Zero
    fis = addmf(fis, 'input', 1, 'PS', 'trimf', [0, 1, 2]);    % Positive Small
    fis = addmf(fis, 'input', 1, 'PL', 'trimf', [1, 2, 2]);    % Positive Large

    % 添加输入变量:纵向误差 ey
    fis = addvar(fis, 'input', 'ey', [-5, 5]);
    fis = addmf(fis, 'input', 2, 'NL', 'trimf', [-5, -5, -2.5]);
    fis = addmf(fis, 'input', 2, 'NS', 'trimf', [-5, -2.5, 0]);
    fis = addmf(fis, 'input', 2, 'ZE', 'trimf', [-2.5, 0, 2.5]);
    fis = addmf(fis, 'input', 2, 'PS', 'trimf', [0, 2.5, 5]);
    fis = addmf(fis, 'input', 2, 'PL', 'trimf', [2.5, 5, 5]);

    % 添加输入变量:航向角偏差 theta
    fis = addvar(fis, 'input', 'theta', [-pi/4, pi/4]);
    fis = addmf(fis, 'input', 3, 'NL', 'trimf', [-pi/4, -pi/4, -pi/8]);
    fis = addmf(fis, 'input', 3, 'NS', 'trimf', [-pi/4, -pi/8, 0]);
    fis = addmf(fis, 'input', 3, 'ZE', 'trimf', [-pi/8, 0, pi/8]);
    fis = addmf(fis, 'input', 3, 'PS', 'trimf', [0, pi/8, pi/4]);
    fis = addmf(fis, 'input', 3, 'PL', 'trimf', [pi/8, pi/4, pi/4]);

    % 添加输出变量:前轮转角 delta
    fis = addvar(fis, 'output', 'delta', [-pi/4, pi/4]);
    fis = addmf(fis, 'output', 1, 'NL', 'trimf', [-pi/4, -pi/4, -pi/8]);
    fis = addmf(fis, 'output', 1, 'NS', 'trimf', [-pi/4, -pi/8, 0]);
    fis = addmf(fis, 'output', 1, 'ZE', 'trimf', [-pi/8, 0, pi/8]);
    fis = addmf(fis, 'output', 1, 'PS', 'trimf', [0, pi/8, pi/4]);
    fis = addmf(fis, 'output', 1, 'PL', 'trimf', [pi/8, pi/4, pi/4]);

    % 添加输出变量:车速 v
    fis = addvar(fis, 'output', 'v', [-1, 1]);
    fis = addmf(fis, 'output', 2, 'NL', 'trimf', [-1, -1, -0.5]);
    fis = addmf(fis, 'output', 2, 'NS', 'trimf', [-1, -0.5, 0]);
    fis = addmf(fis, 'output', 2, 'ZE', 'trimf', [-0.5, 0, 0.5]);
    fis = addmf(fis, 'output', 2, 'PS', 'trimf', [0, 0.5, 1]);
    fis = addmf(fis, 'output', 2, 'PL', 'trimf', [0.5, 1, 1]);

    % 添加模糊规则
    ruleList = [
        1 1 1 1 1 1; % ex=NL, ey=NL, theta=NL -> delta=NL, v=NL
        2 2 2 2 2 1;
        3 3 3 3 3 1;
        4 4 4 4 4 1;
        5 5 5 5 5 1;
    ];
    fis = addrule(fis, ruleList);

    % 模糊推理
    fis.Inputs(1).Value = ex;
    fis.Inputs(2).Value = ey;
    fis.Inputs(3).Value = theta;
    evalfis(fis);
    delta = fis.Outputs(1).Value;
    v = fis.Outputs(2).Value;
end

在这里插入图片描述


2.2 主程序
% 初始化
x_car = 0; y_car = 0; % 车辆初始位置
theta_car = 0;        % 车辆初始航向角
goal_x = 5; goal_y = 2; % 目标停车位中心
L = 2.5;              % 车辆轴距
dt = 0.1;             % 时间步长

% 记录轨迹
trajectory = [];

% 主循环
for t = 0:dt:20
    % 计算误差
    ex = goal_x - x_car;
    ey = goal_y - y_car;
    theta_error = atan2(goal_y - y_car, goal_x - x_car) - theta_car;

    % 模糊控制
    [delta, v] = fuzzy_parking_controller(ex, ey, theta_error);

    % 更新车辆状态
    x_car = x_car + v * cos(theta_car) * dt;
    y_car = y_car + v * sin(theta_car) * dt;
    theta_car = theta_car + (v / L) * tan(delta) * dt;

    % 记录轨迹
    trajectory = [trajectory; x_car, y_car];

    % 可视化
    clf;
    plot_trajectory(trajectory, goal_x, goal_y);
    hold on;
    drawnow;
end

function plot_trajectory(trajectory, goal_x, goal_y)
    % 绘制轨迹
    plot(trajectory(:, 1), trajectory(:, 2), 'b', 'LineWidth', 2);
    hold on;
    plot(goal_x, goal_y, 'r*', 'MarkerSize', 10);
    axis equal;
    xlim([-1, 6]);
    ylim([-1, 3]);
    title('Fuzzy Control Based Parallel Parking');
end

3. 运行效果

  • 车辆从初始位置开始,逐步调整转向角和车速,最终平稳地停入目标车位。
  • 轨迹图显示车辆的运动路径。

4. 注意事项

  1. 模糊规则调整
    • 根据实际场景调整模糊规则和隶属函数,以提高泊车精度。
  2. 车辆模型
    • 当前使用的是简单的自行车模型,可扩展为更复杂的动力学模型。
  3. 实时性
    • 如果应用于实际系统,需优化计算效率。

以上代码实现了基于模糊控制的平行泊车系统,适用于自动驾驶研究和仿真测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值