AI大模型本地部署:Ollama+MaxKB 部署本地知识库

前言

本文我们介绍另外一种部署本地知识库的方案:

Ollama + MaxKB

相对来说,容易安装且功能较完善,30 分钟内即可上线基于本地大模型的知识库问答系统,并嵌入到第三方业务系统中。

缺点是如果你的电脑配置不高,问题回答响应时间较长。

下图为 MaxKB 的产品架构:

实现原理上,仍然是应用了 RAG 流程:

安装 MaxKB

首先我们通过 Docker 安装 MaxKB

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data cr2.fit2cloud.com/1panel/maxkb

注意这里镜像源是 china mainland,走代理的镜像会下载失败。

安装成功后访问:http://localhost:8080/ 登录,初始账号为:

用户名: admin
密码: MaxKB@123..

进入系统后是这样的:

配置模型

接下来我们进行最重要的模型配置

可以看到有许多模型的供应商,这里你可以通过 API key 在线去连接大模型

API key 不同的模型厂商有不同的申请地址,这种方式不是本文采用的方式,本文我们将把通过 Ollama 本地部署的 Qwen2 大模型配置到 MaxKB

所以,第一步我们添加模型选择 Ollama

第二步配置模型,在模型添加界面有几个点要注意(下图是修改界面,和添加界面差不多)

  1. 模型名称和基础模型一定要和你在 ollama list 中显示的一样,不然可能会导致没有必要的重复下载和连接失败
  2. API 域名,因为 MaxKB 是 Docker 部署的,Ollama 是本机部署的,不在一个网络环境,所以要填 :host.docker.internal:11434
  3. API Key 随便写什么都行

创建知识库

模型添加完成,就可以创建知识库了。

这个比较简单,通过界面功能自己就能搞定,我就不多说了

这里比较好的是,MaxKB 支持选择文件夹,这一点 AnythingLLM 就不行,不过一次上传文件数量有限:

支持格式:TXT、Markdown、PDF、DOCX、HTML 每次最多上传50个文件,每个文件不超过 100MB 若使用【高级分段】建议上传前规范文件的分段标识

创建应用

知识库创建完,就可以创建应用进行问答了

这里注意除了要为应用添加知识库外,还要进行一下参数设置

我选择的是第二项,因为我的知识库数据量较小

设置完成后点击演示

问答效果展示

这里不太好的是没有同时展示引文,更不用说引文的预览了,实际上这个功能基本上是企业应用上的 刚需

嵌入第三方应用

嵌入三方应用的需求也是比较常见的,比如你可以通过 iframe 或者 js 代码的形式嵌入到你现有的系统中,我们经常看到一些网站右下角的浮窗就是这种形式,在 MaxKB 中支持嵌入三方应用,需要在应用的 “概览” 中点击 “嵌入第三方”

剩下的你只需要把代码集成到你的其他应用中就可以了

思考

学习新知识,最好的方式就是直接去应用它,你可能从来都不知道什么是 RAG,但对相关知识有个大概了解后,通过实践,亲自搭建几个可以 run 起来的应用,那些架构里的结构、名词,逐渐全部都能对应得上了。

我笔记本的配置有限,如果所有的东西都部署在配置有性能强较的显卡的服务器上,那么就可以满足企业级应用的需求了,企业可以直接完成私有化部署并开始应用。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 关于 MaxKBOllama大模型介绍 MaxKB 是一款基于大型语言模型 (LLM) 构建的知识库问答系统,旨在为企业和个人提供强大的学习能力以及高效的问答响应速度[^1]。该系统的名称意指“最大化的知识库”,反映了其作为企业智慧核心的目标。 #### 功能特性 - **集成灵活性**:通过与Ollama的合作,MaxKB不仅能够处理本地存储的数据,还能轻松连接到外部资源并执行复杂的查询任务。 - **自动化程度高**:一旦完成Docker环境下的部署工作之后,在MaxKB平台上配置新的AI模型变得异常简单——只需指定所需的AI模型类型,后续安装过程由Ollama自动完成[^3]。 - **用户体验优化**:提供了直观易用的操作界面和支持多种文件类型的上传方式;同时具备先进的自然语言处理技术来提升用户的交互质量[^4]。 ```bash # 示例命令行指令用于启动 Docker 容器中的 MaxKB 应用程序 docker run -d --name maxkb_app -p 8080:80 maxkb_image_tag ``` ### 使用指南 为了充分利用这两个平台的优势,用户首先需要确保已经在WSL2环境中成功设置了Docker服务[^2]。接着按照官方文档指示逐步设置MaxKB实例,并利用OnePanel这样的管理工具简化整个流程。最后一步则是引入特定领域内的预训练LLMs(如来自Ollama的支持版本),从而赋予应用程序更加专业的对话技能和服务范围。 ### 性能对比分析 当考虑采用何种解决方案时,除了考量上述提到的功能外,还应该关注几个方面: - **成本效益**:评估初始投资费用、长期维护开支等因素; - **技术支持力度**:考察供应商能否及时解决问题的能力及其社区活跃度; - **定制化可能性**:确认是否有足够的接口供二次开发人员调整以满足特殊需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值