模型上下文协议(MCP):一种标准化接口,旨在实现AI模型与外部工具和资源之间的无缝交互,打破数据孤岛,促进不同系统之间的互操作性。
在MCP出现之前,AI应用与外部工具的交互依赖于手动API连接、插件接口和Agent框架等方法,这些方法存在复杂性高、可扩展性差等问题
来自华科的研究人员详细探讨了MCP的核心组件、工作流程、服务器生命周期,并分析了其在创建、运行和更新阶段的安全和隐私风险,还考察了MCP的当前生态系统(行业中采用情况、用例、支持其集成的工具和平台)。
一、MCP核心组件
-
MCP架构:MCP由三个核心组件构成:MCP主机、MCP客户端和MCP服务器。这些组件协同工作,实现AI应用与外部工具和数据源之间的无缝通信。
-
MCP主机:提供执行AI任务的环境,并运行MCP客户端。
-
MCP客户端:作为主机环境中的中介,管理MCP主机与一个或多个MCP服务器之间的通信。
-
MCP服务器:提供外部系统和操作的访问权限,具备工具、资源和提示三种核心能力。
-
MCP的传输层和通信机制
传输层是MCP架构中的关键组成部分,负责在MCP客户端和MCP服务器之间实现安全、双向的通信;通信流程的具体步骤:
-
初始请求:MCP客户端向MCP服务器发送初始请求,查询服务器的功能和可用工具。
-
初始响应:MCP服务器接收到请求后,返回一个初始响应,列出其提供的工具、资源和提示,供客户端使用。
-
持续通知:在建立连接后,MCP服务器会持续向客户端发送通知,实时更新服务器状态或任务进度,确保客户端能够及时获取最新信息。
二、MCP服务器生命周期
-
MCP服务器生命周期:
-
创建阶段:涉及服务器注册、安装程序部署和代码完整性验证。此阶段面临的风险包括名称冲突、安装程序伪造和代码注入/后门。
-
运行阶段:服务器在此阶段处理请求、执行工具调用,并与外部资源进行交互。风险包括工具名称冲突、斜杠命令重叠和沙箱逃逸。
-
更新阶段:确保服务器保持安全、最新,并适应不断变化的需求。风险包括更新后权限持续、版本控制问题和旧版本配置漂移。
-
三、MCP生态系统
-
关键采用者(Key Adopters):
-
Anthropic 和 OpenAI 等行业领导者已将MCP集成到其产品中,例如Anthropic的Claude桌面版和OpenAI的Agent SDK,显著提升了AI代理与外部工具的交互能力。
-
百度地图、BlenderMCP 和 Replit 等工具也通过MCP实现了与外部API和服务的无缝集成。
-
开发者工具和IDE,如 Cursor、JetBrains 和 TheiaIDE,通过MCP集成了AI工具,提升了开发效率。
-
-
社区驱动的MCP服务器(Community-Driven MCP Servers):
-
尽管Anthropic尚未发布官方MCP市场,但社区已经创建了多个独立的服务器集合平台,如 MCP.so、Glama 和 PulseMCP,提供了数千个MCP服务器。
-
-
SDKs和工具(SDKs and Tools):
-
官方SDK支持多种语言(如TypeScript、Python、Java等),方便开发者在不同环境中实现MCP。
-
社区贡献了多种框架和工具,如 EasyMCP、FastMCP 和 Foxy Contexts,简化了MCP服务器的开发和部署。
-
四、MCP用例
-
OpenAI:
-
OpenAI通过在Agent SDK中集成MCP,简化了AI代理与外部工具的交互,提升了多步任务执行的效率。
-
计划将MCP集成到ChatGPT桌面应用中,进一步扩展AI代理的功能。
-
-
Cursor:
-
Cursor通过MCP集成了AI驱动的代码助手,使开发者能够在IDE中直接调用外部API和工具,自动化复杂任务,提升开发效率。
-
-
Cloudflare:
-
Cloudflare提供了远程MCP服务器托管服务,消除了本地配置的复杂性,支持多租户环境中的安全访问和管理。
-
通过OAuth认证和沙箱机制,确保了AI驱动的工作流在分布式环境中的安全执行。
-
四、安全与策略
详细分析了MCP在不同生命周期阶段的安全威胁,并提出了相应的缓解策略:
-
创建阶段:建议建立严格的命名空间策略、实施加密服务器验证和设计基于声誉的信任系统。
-
运行阶段:建议开发高级验证和异常检测技术,以识别和缓解欺骗性工具描述。
-
更新阶段:建议实施严格的权限撤销策略、确保权限变更在所有服务器实例中一致传播,并为API密钥和会话令牌设置自动过期机制
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓