一、CBAM注意力机制简介
CBAM注意力机制(Convolutional Block Attention Module)
。它结合了空间注意力机制(Spatial Attention Module)
以及通道注意力机制(Channel Attention Module)
,以此来提升图片分类以及目标检测的结果。
它与SEnet
的区别是,SEnet
注意力机制只关注通道信息,CBAM
注意力机制在通道信息的基础上还增加了对于空间信息的处理。
CBAM结构图如下图所示:(输入特征经过通道注意力机制模块之后,再经过空间注意力机制模块,得到输出特征
)
通道注意力机制模块的结构图如下图所示:
空间注意力机制模块的结构图如下图所示:
将CBAM
模块集成到ResBlock
中的结构图如下所示:
目标检测任务中,CBAM
模块在MS COCO
验证集上的表现如下:
目标检测任务中,CBAM
模块在VOC 2007
测试集上的表现如下:
【注意:1】具体的细节请移步论文:https://arxiv.org/pdf/1807.06521.pdf
【注意:2】GIthub代码:https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py
二、增加CBAM注意力机制到YOLOv8模型上
(写在前面:增加CBAM
注意力机制的方法与增加SE
的方法是一样的,区别在于,YOLOv8
原来就自带CBAM
模块,所以修改的地方会少一些)
**修改的还是下面的四个地方
。
【1: …/ultralytics/nn/modules/conv.py
】
conv.py
中该增加CBAM
模块的地方都已经增加了,可以不用管,或者你检查一下,如果缺少CBAM
的代码,请加入以下内容,然后在__all__ =
中声明一下,具体的可以对照一下这篇文章,加深一下印象:**https://blog.csdn.net/A__MP/article/details/136515383?spm=1001.2014.3001.5502
class CBAM(nn.Module):
"""Convolutional Block Attention Module."""
def __init__(self, c1, kernel_size=7):
"""Initialize CBAM with given input channel (c1) and kernel size."""
super().__init__()
self.channel_attention = ChannelAttention(c1)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
"""Applies the forward pass through C1 module."""
return self.spatial_attention(self.channel_attention(x))
class Concat(nn.Module):
"""Concatenate a list of tensors along dimension."""
def __init__(self, dimension=1):
"""Concatenates a list of tensors along a specified dimension."""
super().__init__()
self.d = dimension
def forward(self, x):
"""Forward pass for the YOLOv8 mask Proto module."""
return torch