Kalman滤波器推导

卡尔曼滤波器推导如下:

k − 1 k-1 k1 k k k时刻,系统状态方程
x k = A x k − 1 + B u k + C w k x_k=Ax_{k-1}+Bu_k+Cw_k xk=Axk1+Buk+Cwk
系统观测方程
y k = H x k + v k y_k=Hx_k+v_k yk=Hxk+vk
其中, x k x_k xk为真实值; A A A为状态转移矩阵; u k u_k uk为系统输入; B B B为输入增益矩阵; y k y_k yk为测量值; H H H为观测矩阵; w k ∼ N ( 0 , Q ) w_k \sim N \left( 0,Q \right) wkN(0,Q)为过程高斯噪声, Q Q Q为其协方差阵; C C C为过程噪声增益矩阵; v k ∼ N ( 0 , R ) v_k\sim N\left( 0,R \right) vkN(0,R)为测量高斯噪声, R R R为其协方差阵; w k w_k wk v k v_k vk不相关。

卡尔曼滤波器(预测+修正):
x ^ k ′ = A x ^ k − 1 + B u k x ^ k = x ^ k ′ + K k ( y k − H x ^ k ′ ) \hat{x}_k'=A\hat{x}_{k-1}+Bu_k \\ \hat{x}_k=\hat{x}_k'+K_k\left( y_k-H\hat{x}_k' \right) x^k=Ax^k1+Bukx^k=x^k+Kk(ykHx^k)
其中, x ^ k \hat{x}_k x^k为卡尔曼估计值(后验); x ^ k ′ \hat{x}_k' x^k为预测值(先验); K k K_k Kk为卡尔曼增益。

希望设计出 K k K_k Kk使得卡尔曼估计值接 x ^ k \hat{x}_k x^k近于系统输出的真实值 x k x_k xk

从协方差矩阵(对称矩阵)开始,真实值与预测值之间的误差为
e k ′ = x k − x ^ k ′ e_k'=x_k-\hat{x}_k' ek=xkx^k
预测误差协方差矩阵为
P k ′ = E [ e k ′ e k ′ T ] = E [ ( x k − x ^ k ′ ) ( x k − x ^ k ′ ) T ] P_k'=E\left[ e_k'e_k'^T \right] =E\left[ \left( x_k-\hat{x}_k' \right) \left( x_k-\hat{x}_k' \right) ^T \right] Pk=E[ekekT]=E[(xkx^k)(xkx^k)T]
真实值与估计值之间的误差为
e k = x k − x ^ k = x k − ( x ^ k ′ + K k ( H x k + v k − H x ^ k ′ ) ) = ( I − K k H ) ( x k − x ^ k ′ ) − K k v k \begin{aligned} e_k&=x_k-\hat{x}_k=x_k-\left( \hat{x}_k'+K_k\left( Hx_k+v_k-H\hat{x}_k' \right) \right) \\ &=\left( I-K_kH \right) \left( x_k-\hat{x}_k' \right) -K_kv_k \end{aligned} ek=xkx^k=xk(x^k+Kk(Hxk+vkHx^k))=(IKkH)(xkx^k)Kkvk
卡尔曼估计误差协方差矩阵为
P k = E [ e k e k T ] = E [ [ ( I − K k H ) ( x k − x ^ k ′ ) − K k v k ] [ ( I − K k H ) ( x k − x ^ k ′ ) − K k v k ] T ] = ( I − K k H ) E [ ( x k − x ^ k ′ ) ( x k − x ^ k ′ ) T ] ( I − K k H ) T + K k E [ v k v k T ] K T = ( I − K k H ) P k ′ ( I − K k H ) T + K k R K k T \begin{aligned} P_k&=E\left[ e_ke_k^T \right] \\ &=E\left[ \left[ \left( I-K_kH \right) \left( x_k-\hat{x}_k' \right) -K_kv_k \right] \left[ \left( I-K_kH \right) \left( x_k-\hat{x}_k' \right) -K_kv_k \right] ^T \right] \\ &=\left( I-K_kH \right) E\left[ \left( x_k-\hat{x}_k' \right) \left( x_k-\hat{x}_k' \right) ^T \right] \left( I-K_kH \right) ^T+K_kE\left[ v_kv_k^T \right] K^T \\ &=\left( I-K_kH \right) P_k'\left( I-K_kH \right) ^T+K_kRK_k^T \end{aligned} Pk=E[ekekT]=E[[(IKkH)(xkx^k)Kkvk][(IKkH)(xkx^k)Kkvk]T]=(IKkH)E[(xkx^k)(xkx^k)T](IKkH)T+KkE[vkvkT]KT=(IKkH)Pk(IKkH)T+KkRKkT
卡尔曼滤波本质是最小均方差估计,而均方差是 P k P_k Pk的迹,将上式展开并求迹,有
t r ( P k ) = t r ( P k ′ ) − 2 t r ( K k H P k ′ ) + t r ( K k ( H P k ′ H T + R ) K k T ) tr\left( P_k \right) =tr\left( P_k' \right) -2tr\left( K_kHP_k' \right) +tr\left( K_k\left( HP_k'H^T+R \right) K_k^T \right) tr(Pk)=tr(Pk)2tr(KkHPk)+tr(Kk(HPkHT+R)KkT)
最优估计的 K k K_k Kk使均方差最小,所以上式对 K k K_k Kk求导,有
∂ t r ( P k ) ∂ K k = − ∂ t r ( 2 K k H P k ′ ) ∂ K k + ∂ t r ( K k ( H P k ′ H T + R ) K k T ) ∂ K k = − 2 ( H P k ′ ) T + 2 K k ( H P k ′ H T + R ) \begin{aligned} \frac{\partial tr\left( P_k \right)}{\partial K_k}&=-\frac{\partial tr\left( 2K_kHP_k' \right)}{\partial K_k}+\frac{\partial tr\left( K_k\left( HP_k'H^T+R \right) K_k^T \right)}{\partial K_k} \\ &=-2\left( HP_k' \right) ^T+2K_k\left( HP_k'H^T+R \right) \end{aligned} Kktr(Pk)=Kktr(2KkHPk)+Kktr(Kk(HPkHT+R)KkT)=2(HPk)T+2Kk(HPkHT+R)
令上式等于 0 0 0,得到
K k = P k ′ H T ( H P k ′ H T + R ) − 1 K_k=P_k'H^T\left( HP_k'H^T+R \right) ^{-1} Kk=PkHT(HPkHT+R)1
其中
P k ′ = E [ ( x k − x ^ k ′ ) ( x k − x ^ k ′ ) T ] = E [ ( A x k − 1 + B u k + C w k − A x ^ k − 1 − B u k ) ( A x k − 1 + B u k + C w k − A x ^ k − 1 − B u k ) T ] = E [ ( A ( x k − 1 − x ^ k − 1 ) + C w k ) ( A ( x k − 1 − x ^ k − 1 ) + C w k ) T ] = E [ ( A e k − 1 ) ( A e k − 1 ) T ] + E [ C w k ( C w k ) T ] = A P k − 1 A T + C Q C T \begin{aligned} P_k'&=E\left[ \left( x_k-\hat{x}_k' \right) \left( x_k-\hat{x}_k' \right) ^T \right] \\ &=E\left[ \left( Ax_{k-1}+Bu_k+Cw_k-A\hat{x}_{k-1}-Bu_k \right) \left( Ax_{k-1}+Bu_k+Cw_k-A\hat{x}_{k-1}-Bu_k \right) ^T \right] \\ &=E\left[ \left( A\left( x_{k-1}-\hat{x}_{k-1} \right) +Cw_k \right) \left( A\left( x_{k-1}-\hat{x}_{k-1} \right) +Cw_k \right) ^T \right] \\ &=E\left[ \left( Ae_{k-1} \right) \left( Ae_{k-1} \right) ^T \right] +E\left[ Cw_k\left( Cw_k \right) ^T \right] \\ &=AP_{k-1}A^T+CQC^T \end{aligned} Pk=E[(xkx^k)(xkx^k)T]=E[(Axk1+Buk+CwkAx^k1Buk)(Axk1+Buk+CwkAx^k1Buk)T]=E[(A(xk1x^k1)+Cwk)(A(xk1x^k1)+Cwk)T]=E[(Aek1)(Aek1)T]+E[Cwk(Cwk)T]=APk1AT+CQCT
此时
P k = P k ′ − K k H P k ′ − P k ′ H T K k T + K k ( H P k ′ H T + R ) K k T = P k ′ − K k H P k ′ − P k ′ H T K k T + P k ′ H T ( H P k ′ H T + R ) − 1 ( H P k ′ H T + R ) K k T = P k ′ − K k H P k ′ = ( I − K k H ) P k ′ \begin{aligned} P_k&=P_k'-K_kHP_k'-P_k'H^TK_k^T+K_k\left( HP_k'H^T+R \right) K_k^T \\ &=P_k'-K_kHP_k'-P_k'H^TK_k^T+P_k'H^T\left( HP_k'H^T+R \right) ^{-1}\left( HP_k'H^T+R \right) K_k^T \\ &=P_k'-K_kHP_k' \\ &=\left( I-K_kH \right) P_k' \end{aligned} Pk=PkKkHPkPkHTKkT+Kk(HPkHT+R)KkT=PkKkHPkPkHTKkT+PkHT(HPkHT+R)1(HPkHT+R)KkT=PkKkHPk=(IKkH)Pk
总结如下:

模型:
x k = A x k − 1 + B u k + C w k x_k=Ax_{k-1}+Bu_k+Cw_k xk=Axk1+Buk+Cwk

y k = H x k + v k y_k=Hx_k+v_k yk=Hxk+vk

初始化:
x ^ 0 \hat{x}_0 x^0

P 0 = E ( e 0 e 0 T ) = E [ ( x 0 − x ^ 0 ) ( x 0 − x ^ 0 ) T ] P_0=E\left( e_0e_0^T \right) =E\left[ \left( x_0-\hat{x}_0 \right) \left( x_0-\hat{x}_0 \right) ^T \right] P0=E(e0e0T)=E[(x0x^0)(x0x^0)T]

增益:
K k = P k ′ H T ( H P k ′ H T + R ) − 1 K_k=P_k'H^T\left( HP_k'H^T+R \right) ^{-1} Kk=PkHT(HPkHT+R)1
更新:
x ^ k = x ^ k ′ + K k ( y k − H x ^ k ′ ) \hat{x}_k=\hat{x}_k'+K_k\left( y_k-H\hat{x}_k' \right) x^k=x^k+Kk(ykHx^k)

P k = ( I − K k H ) P k ′ P_k=\left( I-K_kH \right) P_k' Pk=(IKkH)Pk

预测:
x ^ k ′ = A x ^ k − 1 + B u k \hat{x}_k'=A\hat{x}_{k-1}+Bu_k x^k=Ax^k1+Buk

P k ′ = A P k − 1 A T + C Q C T P_k'=AP_{k-1}A^T+CQC^T Pk=APk1AT+CQCT

因为 P k P_k Pk对角线元素是误差的方差,并且误差都服从正态分布,由数理统计的知识可知,当模拟时间
足够长,每个状态的估计误差数据各自约有99.74%会落入对应的 [ − 3 σ , 3 σ ] [-3\sigma,3\sigma] [3σ,3σ]区间,换句话说,每个状态的真值约有 99.74 % 99.74\% 99.74%出现在区间 [ x ^ k − 3 σ , x ^ k + 3 σ ] [\hat{x}_k-3\sigma,\hat{x}_k+3\sigma] [x^k3σ,x^k+3σ]内。

B = O B=O B=O时,最优估计 x ( k + 1 ) x(k+1) x(k+1)和观测矢量 y ( 1 ) , y ( 2 ) , ⋯   , y ( k + 1 ) y(1),y(2),\cdots,y(k+1) y(1),y(2),,y(k+1)之间的递归关系如下:
x ( k + 1 ) = A x ( k ) + K ( k + 1 ) [ y ( k + 1 ) − H A x ( k ) ] = K ( k + 1 ) y ( k + 1 ) + [ I − K ( k + 1 ) H ] A x ( k ) = K ( k + 1 ) y ( k + 1 ) + [ I − K ( k + 1 ) H ] A [ K ( k ) y ( k ) + [ I − K ( k ) H ] A x ( k − 1 ) ] = K ( k + 1 ) y ( k + 1 ) + [ I − K ( k + 1 ) H ] A K ( k ) y ( k ) + [ I − K ( k + 1 ) H ] A [ I − K ( k ) H ] A x ( k − 1 ) = K ( k + 1 ) y ( k + 1 ) + ∑ j = 0 k − 1 { [ ∏ i = k k − j [ [ I − K ( i + 1 ) H ] A ] ] K ( k − j ) y ( k − j ) } + [ ∏ i = k 0 [ [ I − K ( i + 1 ) H ] A ] ] x ( 0 ) \begin{aligned} x\left( k+1 \right) &=Ax\left( k \right) +K\left( k+1 \right) \left[ y\left( k+1 \right) -HAx\left( k \right) \right] \\ &=K\left( k+1 \right) y\left( k+1 \right) +\left[ I-K\left( k+1 \right) H \right] Ax\left( k \right) \\ &=K\left( k+1 \right) y\left( k+1 \right) + \left[ I-K\left( k+1 \right) H \right] A\left[ K\left( k \right) y\left( k \right) +\left[ I-K\left( k \right) H \right] Ax\left( k-1 \right) \right] \\ &=K\left( k+1 \right) y\left( k+1 \right) + \left[ I-K\left( k+1 \right) H \right] AK\left( k \right) y\left( k \right) + \left[ I-K\left( k+1 \right) H \right] A\left[ I-K\left( k \right) H \right] Ax\left( k-1 \right) \\ &=K\left( k+1 \right) y\left( k+1 \right) + \sum_{j=0}^{k-1}{\left\{ \left[ \prod_{i=k}^{k-j}{\left[ \left[ I-K\left( i+1 \right) H \right] A \right]} \right] K\left( k-j \right) y\left( k-j \right) \right\} +} \left[ \prod_{i=k}^0{\left[ \left[ I-K\left( i+1 \right) H \right] A \right]} \right] x\left( 0 \right) \end{aligned} x(k+1)=Ax(k)+K(k+1)[y(k+1)HAx(k)]=K(k+1)y(k+1)+[IK(k+1)H]Ax(k)=K(k+1)y(k+1)+[IK(k+1)H]A[K(k)y(k)+[IK(k)H]Ax(k1)]=K(k+1)y(k+1)+[IK(k+1)H]AK(k)y(k)+[IK(k+1)H]A[IK(k)H]Ax(k1)=K(k+1)y(k+1)+j=0k1{[i=kkj[[IK(i+1)H]A]]K(kj)y(kj)}+[i=k0[[IK(i+1)H]A]]x(0)

仿真:
{ x 1 ( k + 1 ) = x 1 ( k ) + x 2 ( k ) + w ( k ) x 2 ( k + 1 ) = x 2 ( k ) + w ( k ) y 1 ( k + 1 ) = x 1 ( k + 1 ) + v 1 ( k + 1 ) y 2 ( k + 1 ) = x 2 ( k + 1 ) + v 2 ( k + 1 ) k = 0 , 1 , ⋯ ⟺ { A = [ 1 1 0 1 ] B = O C = [ 1 1 ] H = [ 1 0 0 1 ] E [ w 2 ] = 1 , E [ v v T ] = [ 1 0 0 2 ] , E [ w v T ] = [ 0 0 0 0 ] \begin{cases} x_{1}(k+1)=x_{1}(k)+x_{2}(k)+w(k) \\ x_{2}(k+1)=x_{2}(k)+w(k)\\ y_{1}(k+1)=x_{1}(k+1)+v_{1}(k+1) \\ y_{2}(k+1)=x_{2}(k+1)+v_{2}(k+1) \\ k=0,1,\cdots \end{cases} \Longleftrightarrow \begin{cases} A=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \\ B=O \\ C=\begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ H=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{cases}\\ E[w^{2}]=1, E[vv^{T}]=\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, E[wv^{T}]=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x1(k+1)=x1(k)+x2(k)+w(k)x2(k+1)=x2(k)+w(k)y1(k+1)=x1(k+1)+v1(k+1)y2(k+1)=x2(k+1)+v2(k+1)k=0,1, A=[1011]B=OC=[11]H=[1001]E[w2]=1,E[vvT]=[1002],E[wvT]=[0000]

clear;clc;close all;
N=11;% 采样点数
n=2;% 本系统2维
%% 状态和测量值初始化
X=zeros(n,N);%各时刻真实值,初始值为0
X_kf=zeros(n,N);% 估计值(Kalman滤波处理的状态)
Y=zeros(2,N); %测量值
K=zeros(n,2,N); 
I=eye(n); 
%% 噪声
Q=1;%W(k)的方差
R1=1;%V1(k)的方差
R2=2;%V2(k)的方差
R=[R1 0;0 R2];
rng(4);%确定随机种子,防止每次W和V不同
W=sqrt(Q)*randn(1,N);
V1=sqrt(R1)*randn(1,N);
V2=sqrt(R2)*randn(1,N);
V=[V1;V2];
%% 赋初值
X(:,1)=[0;0];%系统初值
P(:,:,1)=I;%初始值的协方差

sigma_x1_fang(1)=P(1,1,1);
sigma_x2_fang(1)=P(2,2,1);
X_kf(:,1)=[0.5;0.2];%滤波器的初始估计状态,不知道,任意
%% 系统矩阵
A=[1 1;0 1];
B=[0;0];
u_k=0;
C=[1;1];
H=[1 0;0 1];
%% 模拟测量过程,并滤波
for k=2:N
    X(:,k)=A*X(:,k-1)+B*u_k+C*W(k-1);  
    Y(:,k)=H*X(:,k)+V(:,k);

    X_pre=A*X_kf(:,k-1)+B*u_k;
    P_pre=A*P(:,:,k-1)*A'+C*Q*C'; 
    
    K(:,:,k)=P_pre*H'/(H*P_pre*H'+R); 
    P(:,:,k)=(I-K(:,:,k)*H)*P_pre;

    X_kf(:,k)=X_pre+K(:,:,k)*(Y(:,k)-H*X_pre);         
    
    sigma_x1_fang(k)=P(1,1,k);
    sigma_x2_fang(k)=P(2,2,k);
end
%% 误差计算
Err_Kalman_x1=X(1,:)-X_kf(1,:);
Err_Kalman_x2=X(2,:)-X_kf(2,:);
%% 绘图
t=0:N-1;
figure('Name','Kalman滤波仿真')
plot(t,X_kf(1,:),'-.b','LineWidth',1.5);hold on 
plot(t,X(1,:),'-ob','LineWidth',1.5);hold on 
plot(t,X_kf(2,:),'-.k','LineWidth',1.5);hold on 
plot(t,X(2,:),'-ok','LineWidth',1.5);
legend('kalman估计值x_1','真实值x_1','kalman估计值x_2','真实值x_2');         
xlabel('采样时间');
ylabel('kalman估计值和真实值');
title('kalman估计值和真实值');

figure('Name','误差分析')
plot(t,Err_Kalman_x1,'-^b','LineWidth',1.5);
hold on 
plot(t,Err_Kalman_x2,'-^k','LineWidth',1.5);
legend('x_1误差','x_2误差');         
xlabel('采样时间');
ylabel('误差');
title('误差');

figure('Name','误差方差分析')
plot(t,sigma_x1_fang,'-*b','LineWidth',1.5);
hold on 
plot(t,sigma_x2_fang,'-*k','LineWidth',1.5);
legend('x_1误差的方差','x_2误差的方差');         
xlabel('采样时间');
ylabel('误差的方差');
title('状态估计误差的方差');

figure('Name','误差图')
sigma_x1=sigma_x1_fang.^0.5;
sigma_x2=sigma_x2_fang.^0.5;
errorbar(t, X_kf(1,:),3.*sigma_x1,'-ob','LineWidth',1.5);hold on 
plot(t,X(1,:),'-.b','LineWidth',1.5);hold on 
errorbar(t, X_kf(2,:),3.*sigma_x2,'-ok','LineWidth',1.5);hold on 
plot(t,X(2,:),'-.k','LineWidth',1.5);hold on 
legend('kalman估计值x_1误差线','真实值x_1','kalman估计值x_2误差线','真实值x_2');  
xlabel('采样时间');
ylabel('kalman估计值误差线和真实值');

仿真结果:
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

补充: 通过定义 F k = I − K k H F_k=I-K_kH Fk=IKkH ,上面的推导可以还得出如下公式。

P k = P k ′ − K k H P k ′ − P k ′ H T K k T + K k ( H P k ′ H T + R ) K k T ⇔ F k P k ′ F k T + K k R K k T = P k ′ − K k H P k ′ − P k ′ H T K k T + P k ′ H T ( H P k ′ H T + R ) − 1 ( H P k ′ H T + R ) K k T = P k ′ − K k H P k ′ ⇔ P k ′ − P k ′ H T ( H P k ′ H T + R ) − 1 H P k ′ ⇔ ( ( P k ′ ) − 1 + H T R − 1 H ) − 1 = ( I − K k H ) P k ′ ⇔ F k P k ′ \begin{aligned} P_k&=P_k'-K_kHP_k'-P_k'H^TK_k^T+K_k\left( HP_k'H^T+R \right) K_k^T \Leftrightarrow F_kP_k'F_k^T+K_kRK_k^T \\ &=P_k'-K_kHP_k'-P_k'H^TK_k^T+P_k'H^T\left( HP_k'H^T+R \right) ^{-1}\left( HP_k'H^T+R \right) K_k^T \\ &=P_k'-K_kHP_k' \Leftrightarrow P_k' -P_k'H^T\left( HP_k'H^T+R \right) ^{-1}HP_k' \Leftrightarrow ((P_k')^{-1}+H^TR^{-1}H) ^{-1}\\ &=\left( I-K_kH \right) P_k' \Leftrightarrow F_kP_k' \end{aligned} Pk=PkKkHPkPkHTKkT+Kk(HPkHT+R)KkTFkPkFkT+KkRKkT=PkKkHPkPkHTKkT+PkHT(HPkHT+R)1(HPkHT+R)KkT=PkKkHPkPkPkHT(HPkHT+R)1HPk((Pk)1+HTR1H)1=(IKkH)PkFkPk

K k K_k Kk的另一种形式如下,详细推导见信息滤波推导

K k = P k ′ H T ( H P k ′ H T + R ) − 1 = P k H T R − 1 \begin{aligned} K_k&=P_k'H^T\left( HP_k'H^T+R \right) ^{-1} \\ &=P_kH^TR^{-1} \end{aligned} Kk=PkHT(HPkHT+R)1=PkHTR1

所以卡尔曼滤波还有另一种格式的递推公式
{ P k = ( ( P k ′ ) − 1 + H T R − 1 H ) − 1 K k = P k H T R − 1 x ^ k = x ^ k ′ + K k ( y k − H x ^ k ′ ) x ^ k ′ = A x ^ k − 1 + B u k P k ′ = A P k − 1 A T + C Q C T \left\{\begin{aligned} P_k&=((P_k')^{-1}+H^TR^{-1}H)^{-1} \\ K_k&=P_kH^TR^{-1} \\ \hat{x}_k&=\hat{x}_k'+K_k\left( y_k-H\hat{x}_k' \right) \\ \hat{x}_k'&=A\hat{x}_{k-1}+Bu_k \\ P_k'&=AP_{k-1}A^T+CQC^T \end{aligned}\right. PkKkx^kx^kPk=((Pk)1+HTR1H)1=PkHTR1=x^k+Kk(ykHx^k)=Ax^k1+Buk=APk1AT+CQCT

另外通过定义 S = H T R − 1 H , z k = H T R − 1 y k S=H^TR^{-1}H,z_k=H^TR^{-1}y_k S=HTR1H,zk=HTR1yk ,还可以得到一种信息滤波器,如下。

{   S = H T R − 1 H z k = H T R − 1 y k P k = ( ( P k ′ ) − 1 + S ) − 1 x ^ k = x ^ k ′ + P k ( z k − S x ^ k ′ ) x ^ k ′ = A x ^ k − 1 + B u k P k ′ = A P k − 1 A T + C Q C T \left\{\begin{aligned}   S&=H^TR^{-1}H\\ z_k&=H^TR^{-1}y_k \\ P_k&=((P_k')^{-1}+S)^{-1} \\ \hat{x}_k&=\hat{x}_k'+P_k\left( z_k-S\hat{x}_k' \right) \\ \hat{x}_k'&=A\hat{x}_{k-1}+Bu_k \\ P_k'&=AP_{k-1}A^T+CQC^T \end{aligned}\right.  SzkPkx^kx^kPk=HTR1H=HTR1yk=((Pk)1+S)1=x^k+Pk(zkSx^k)=Ax^k1+Buk=APk1AT+CQCT

下一篇:信息滤波推导

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值