卡尔曼滤波详细推导

卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法,由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。卡尔曼滤波器的本质是线性最小均方误差估计,而均方误差是协方差矩阵的迹。卡尔曼滤波有好几种公式推导方法,本文从最小二乘估计的方法推导卡尔曼滤波过程。

卡尔曼滤波有以下几个特点:

(1)卡尔曼滤波处理的对象时随机信号

(2)被处理信号无有用和干扰之分,滤波的目的是要估计出所有被处理信号

(3)系统的白噪声激励和量测噪声并不是需要滤除的对象,它们的统计特性正式估计过程中需要利用的信息

所以确切的说卡尔曼滤波是属于最优估计理论,与常规滤波器具有完全不同的概念和含义,就实际运用而言卡尔曼滤波实质上

是由一套数字计算机实现的递推算法,每个递推周期中包含对被估计量的时间更新和量测更新过程。

1、系统的变量定义

x(k)为系统的真值

z(k)为系统的测量值

k(k)为卡尔曼滤波增益

A系统的状态转移矩阵

B为系统的输入增益矩阵

H为系统的量测矩阵

P(k|k)为最优估计协方差矩阵

P(k|k-1)为预测值协方差矩阵

x(k|k)为k时刻的最优估计值

x(k|k-1)为k时刻的预测值,系统的后验概率估计

x(k-1|k-1)为k-1时刻的最优估计值

u(k)为系统的测量噪声,其均值E(u(k)) = 0,协方差矩阵为R且服从正态分布的测量噪声

w(k)为系统的过程噪声,其均值E(w(k)) = 0,协方差矩阵为Q且服从正态分布的过程噪声

2、系统的状态方程

x(k) = Ax(k-1) + Bu(k) + w(k) ......................................................................(1)

z(k) = Hx(k) + u(k).......................................................................................(2)

x(k|k-1) = Ax(k-1|k-1) + Bu(k).........................................................(3)

x(k|k) = x(k|k-1) + k(k)(z(k) - Hx(k|k-1))........................................(4)

公式(1)为系统状态转移方程,(2)为系统的测量方程,(3)为预测方程(后验概率估计),(4)为最佳估计方程

卡尔曼滤波器最终从上述公式求解出最优估计值x(k|k),在求解最优估计值时首先需要推导出公式(4)的卡尔

曼滤波增益k(k),具体的公式推导见下节

3、卡尔曼滤波推导

遵循误差最小原则,定义误差e(k) = x(k) - x(k|k)求误差最小化,P(k|k)为误差的协方差矩阵

P(k|k) = E[(x(k) - x(k|k))(x(k)-x(k|k))^{T}]................................................(5)

把误差e(k) = x(k) - x(k|k)中的最优估计值x(k|k)用公式(4)替代

e(k) = x(k) - \left \{ x(k|k-1) + k(k)(z(k) - Hx(k|k-1)) \right \}.............................(6)

上述误差方程中的z(k)用公式(2) z(k) = Hx(k) + u(k) 代替得出:

e(k) = x(k) - \left \{ x(k|k-1) + k(k)(Hx(k) + u(k) - Hx(k|k-1)) \right \}

= [x(k) - k(k)Hx(k)) -(x(k|k-1) - k(k)Hx(k|k-1)] - k(k)u(k)

= (I - k(k)H)x(k) - (I - k(k)H)x(k|k-1) - k(k)u(k)

= [I - k(k)H][x(k) - x(k|k-1)] - k(k)u(k)................................................(7)

e(k)e(k)^{T} = [I - k(k)H][x(k) - x(k|k-1)][x(k) - x(k|k-1)]^{T}[I - k(k)H]^{T}

- [I - k(k)H][x(k) - x(k|k-1)]u(k)^{T}k(k)^{T}

 -k(k)u(k)[x(k)-x(k|k-1)]^{T}[I-Hx(k)]^{T}+k(k)u(k)u(k)^{T}k(k)^{T}

由于[x(k) - x(k|k-1)]u(k)无关,并且E[u(k)] = 0 

E[[x(k) - x(k|k-1)][x(k) - x(k|k-1)]^{T}] = P(k|k-1)  所以P(k|k)协方差矩阵如下:

 P(k|k) = E[e(k)e(k)^{T}]= [I - k(k)H]P(k|k-1)[I - k(k)H]^{T} + k(k)Rk(k)^{T}...........(8)

综上所示我们得到了公式(8),我们需对公式(8)求k(k)的导数,使之P(k|k)最小。

我们需将公式(8)展开如下所示:

 P(k|k) = P(k|k-1) - (k(k)HP(k|k-1))^{T} - k(k)HP(k|k-1) \\+ k(k)[HP(k|k-1)H + R]k(k)^{T}....................(9)

卡尔曼滤波器的本质是线性最小均方误差估计,而均方误差是协方差矩阵的迹,所以我们

只需对P(k|k)的迹求导\frac{\partial tr(P(k|k))}{\partial k(k)}。由于tr(A^{T}) = tr(A) ,所以tr(P(k|k-1))如下:

tr(P(k|k-1)) = tr(P(k|k-1)) - 2tr[k(k)HP(k|k-1)] \\+ tr[k(k)[HP(k|k-1)H + R]k(k)^{T}] .................................(10)

对迹求导我们需要知道以下几个矩阵迹求导公式:

\frac{\partial tr(AB)}{\partial A} = B^{T}             若矩阵B是对称阵则\frac{\partial tr(ABA^{T})}{\partial A} = 2AB  其中tr表示矩阵的迹。
 

\frac{\partial tr(P(k|k))}{\partial k(k)} = - 2P(k|k-1)^{T}H^{T} + 2k(k)[HP(k|k-1)H + R] ...............................(11)

\frac{\partial tr(P(k|k))}{\partial k(k)} = 0 得出:    k(k) = \frac{P(k|k-1)H^{T}}{HP(k|k-1)H^{T} + R}  ..........................................(12)

把公式(12)的表达式替换公式(9)最后一项k(k)[HP(k|k-1)H + R]k(k)^{T}k(k)得到以下式子:

P(k|k) = P(k|k-1) - (k(k)HP(k|k-1))^{T} - k(k)HP(k|k-1) \\+ P(k|k-1)H^{T}k(k)^{T}

= P(k|k-1) - (k(k)HP(k|k-1))^{T} - k(k)HP(k|k-1) \\+ (k(k)HP(k|k-1))^{T}

= P(k|k-1) - k(k)HP(k|k-1) = (I - k(k)H)P(k|k-1)..................................(13)

k(k)的取值等于公式(12)时,最优估计值的协方差矩阵P(k|k)方差最小。但该公式中有一个

未知的量P(k|k-1)预测协方差矩阵,接下去我们将就继续推导P(k|k-1)的表达式。

定义预测误差{e}' = x(k) - x(k|k-1),预测协方差矩阵p(k|k-1)=e^{'}(e^{'})^{T}

式子x(k)用公式(1)替代,x(k|k-1) 用公式(3)替代得出:

{e}' = Ax(k-1) + Bu(k) + w(k) - Ax(k-1|k-1) - Bu(k)

= Ax(k-1) - Ax(k-1|k-1) + w(k)

p(k|k-1)=e^{'}(e^{'})^{T}= A(x(k-1) - x(k-1|k-1))(x(k-1) - x(k-1|k-1))^{T}A^{T}

+ A(x(k-1) - x(k-1|k-1))w(k)^{T} + w(k)(x(k-1) - x(k-1|k-1))^{T}A^{T}

+ w(k)w(k)^{T}

由于w(k)(x(k-1) - x(k-1|k-1))无关,且E[w(k)] = 0 所以:

 p(k|k-1)=A[x(k-1)-x(k-1|k-1)][x(k-1)-x(k-1|k-1)]^{T}A^{T}

+w(k)w(k)^{T}

p(k-1|k-1)=[x(k-1)-x(k-1|k-1)][x(k-1)-x(k-1|k-1)]^{T}

 w(k)w(k)^{T}=Q

所以p(k|k-1)=Ap(k-1|k-1)A^{T}+Q......................................................(14)

综上所示卡尔曼滤波的核心公式如下:

x(k|k-1) = Ax(k-1|k-1) + Bu(k)       预测方程

x(k|k) = x(k|k-1) + k(k)(z(k) - Hx(k|k-1))       最优估计方程

k(k) = \frac{P(k|k-1)H^{T}}{HP(k|k-1)H^{T} + R}              卡尔曼滤波增益

P(k|k) = (I - k(k)H)P(k|k-1)         最优估计协方差矩阵递推公式

P(k|k-1) = AP(k-1|k-1)A^{T} + Q       预测协方差矩形递推公式

卡尔曼滤波算法是一种用于估计状态变量的优化算法,常用于处理带有噪声的测量数据。它的推导过程可以通过以下步骤进行: 1. 建立系统的状态空间模型:首先,我们需要确定系统的状态变量以及它们之间的关系。例如,如果我们要估计一个移动物体的位置和速度,我们可以将位置和速度作为状态变量,并通过运动方程建立它们之间的关系。 2. 确定系统的测量模型:接下来,我们需要确定系统测量到的数据与状态变量之间的关系,也就是测量模型。在上述例子中,我们可以使用位置的测量值作为系统的输入。 3. 建立卡尔曼滤波的数学模型:根据系统的状态空间模型和测量模型,我们可以建立卡尔曼滤波的数学模型。这个模型包括预测和更新两个步骤。 4. 预测步骤:在预测步骤中,我们利用当前时刻的状态估计值和模型方程对下一时刻的状态进行预测。 5. 更新步骤:在更新步骤中,我们将预测的状态与实际测量值进行比较,得到更准确的状态估计值。 6. 更新滤波器的协方差矩阵卡尔曼滤波算法还会更新滤波器的协方差矩阵,以反映状态估计值的不确定性。 通过以上步骤,我们可以得到一个递推的卡尔曼滤波算法,用于估计状态变量。这个算法可以在实时环境中使用,并且对噪声有较好的抗干扰能力。 总而言之,卡尔曼滤波算法通过建立系统的状态空间模型和测量模型,利用预测和更新步骤进行状态估计,并更新滤波器的协方差矩阵。通过对系统状态的优化估计,可以得到准确的状态估计结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值