ICLR 2025 | GRAM:多模态对齐新突破

论文题目:GRAMIAN MULTIMODAL REPRESENTATION LEARNING AND ALIGNMENT

在多模态数据处理领域,传统基于余弦相似度的成对对齐方法始终存在扩展性瓶颈。与之不同,Gramian Representation Alignment Measure(GRAM)另辟蹊径,创新性地通过计算k 维平行六面体体积,精准度量模态间的对齐程度。该方法直接作用于模态嵌入的高维空间,支持n 个模态同时对齐,彻底打破了传统方法仅适用于两两对齐的局限,为多模态融合提供了更高效的解决方案。

为进一步优化高维嵌入空间的对齐效果,研究团队提出基于 GRAM 的对比损失函数。该函数以 GRAM 体积计算为核心,引导多模态模型构建高度统一的嵌入空间。通过最小化模态向量张成的平行六面体体积,模型在下游任务中实现了性能突破,刷新了多项基准测试的最优结果。

GRAM 的价值不仅限于对齐度量,更可作为量化多模态模型性能的关键指标。实验数据显示,GRAM 度量值与下游任务性能呈现显著相关性(Pearson 相关系数达 0.923),即平行六面体体积越小,模型性能越优,这一发现为多模态模型的评估与优化提供了全新视角。

核心方法解析

GRAM 通过计算模态向量张成的 k 维平行六面体体积,直接在高维空间中对齐 n 个模态。其核心逻辑在于:通过最小化 Gramian 体积,实现模态间的几何对齐 —— 当多模态数据语义高度一致时,嵌入向量形成的平行六面体体积趋近于零;反之,模态错位会导致体积显著增大。这种量化方式为多模态对齐提供了直观且可计算的衡量标准。

模型架构创新

GRAM 模型架构深度融合体积度量与多模态编码。各模态的类别标记共同构建 k 维平行六面体,其体积实时反馈模态对齐状态。标记经多模态编码器进一步处理,增强预测精度。模型采用 **Gramian 多模态对比损失(LD2A 与 LDAM)** 进行预训练,通过优化体积度量与损失函数的协同,实现对齐效果与模型性能的双重提升。

实证性能优势

在 MSR-VTT、DiDeMo、ActivityNet 和 VATEX 四大权威数据集的文本 - 视频检索任务中,GRAM 方法展现出卓越性能。通过对比 Recall at 1(R@1)指标发现,GRAM 驱动的模型在检索准确率上显著优于传统方法。R@1 作为衡量检索任务中 “首位命中概率” 的核心指标,其提升直接验证了 GRAM 在多模态数据处理中的有效性,凸显了模态对齐优化对检索性能的关键作用。

当下,各类优质的学习资源和创新点也为我们提供了便利。需要的宝子们可以点这里当下热门创新点!CNN-LSTM:神经网络时间序列预测代码逐行解读,迪哥带你手把手搭建自己的多特征变量时间序列预测模型!

谢谢观看!

### 回答1: 格拉姆角场(Gramian Angular Field)是一种用于图像处理和计算机视觉的特征提取方法。它通过计算图像中每个像素与其周围像素之间的角度差异来描述图像的局部结构。这种方法可以用于图像分类、目标检测、人脸识别等应用。 ### 回答2: Gramian angular field 是一种用于描述信号的特征的测量方法。它在信号处理和图像处理领域被广泛应用。 Gramian angular field 的定义基于格拉姆矩阵和角度函数。格拉姆矩阵用于描述信号的内积关系,它可以由信号的自相关矩阵计算得到。角度函数则用于描述信号之间的相对角度。 在计算 Gramian angular field 时,首先需要通过信号的自相关矩阵计算格拉姆矩阵。接下来,利用格拉姆矩阵的特征值和特征向量来计算信号之间的相对角度。最后,将计算得到的相对角度进行可视化,可以得到 Gramian angular field。 Gramian angular field 具有许多应用。例如,在图像处理中,它可以用于图像的特征提取。通过计算图像的 Gramian angular field,可以获取图像的纹理特征,用于图像分类、目标识别等任务。在信号处理中,Gramian angular field 可以用于信号的时频分析,用于检测信号的周期性、频率分布等。 总的来说,Gramian angular field 是一种用于描述信号特征的测量方法,它通过计算格拉姆矩阵和角度函数来获取信号之间的相对角度。它在信号处理和图像处理领域有着广泛的应用。 ### 回答3: Gramian angular field,即格拉米安角场,是一种用于描述图像中空间角度分布特征的数学量。它基于格拉米安矩阵(Gramian matrix)的计算,通过将图像中的像素点映射到极坐标平面上来获取图像的角度分布。 具体而言,Gramian angular field将图像的每个像素点的位置映射到极坐标平面上,并以该像素点作为中心点,则可以计算出该像素点与其他像素点之间的角度。重复这个过程,可以得到整个图像中所有像素点的角度分布情况。 通过计算Gramian angular field,我们可以生成一个与原始图像具有相同尺寸的角度分布图。这个角度分布图可以用于分析图像中物体的空间角度分布特征,例如检测图像中是否存在固定方向的纹理,判断图像的整体结构形态等。 格拉米安角场在计算机视觉和图像处理领域具有广泛的应用。例如,在行人检测中,可以利用格拉米安角场来提取行人的角度分布特征,从而实现行人的姿态判断和行人检测;在纹理分析中,格拉米安角场可以用于检测图像中方向性纹理的存在与方向。 总之,Gramian angular field是一种通过计算图像中像素点之间的角度分布特征来描述图像空间角度分布的数学量,具有丰富的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值