2025创新点|因果推断Causal inference

2024深度学习发论文&模型涨点之——因果推断

因果推断是统计学和流行病学中的一个重要概念,它涉及到确定一个事件(原因)是否会导致另一个事件(结果)。在科学研究和数据分析中,因果推断旨在揭示变量之间的因果关系,而不仅仅是关联关系。

因果推断的关键要素:

  1. 原因(Cause):被认为可能导致结果的因素。
  2. 结果(Effect):被认为可能由原因引起的结果。
  3. 关联(Association):原因和结果之间的统计关系。
  4. 随机化(Randomization):在实验设计中,随机分配实验对象到不同处理组,以减少偏差和混杂因素的影响。
  5. 混杂变量(Confounders):与原因和结果都相关的变量,可能会扭曲因果关系的观察。
  6. 干预(Intervention):对系统进行的操纵,以观察其对结果的影响。

小编整理了一些因果推断论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“因果推断”即可全部领取

论文精选

论文1:

Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey

大型语言模型与因果推断在合作中的综合调查

方法

  • 因果推断框架:探讨了如何将因果推断框架应用于大型语言模型(LLMs),以增强模型的预测准确性、公平性、鲁棒性和可解释性。

  • LLMs的推理能力评估:通过评估LLMs在理解、处理和提供解决方案方面的能力,来衡量和提高这些模型的推理能力。

  • 多模态LLMs的处理:研究了如何处理和扩展LLMs以包含视觉数据,从而构建能够解释和生成多模态内容的更全面的AI系统。

创新点

  • LLMs推理能力的提升:通过因果推断,LLMs在处理数据中的因果关系方面表现出了显著的改进,这在以往的研究中并未充分探讨。

  • 公平性和安全性问题的解决:LLMs在公平性和安全性方面面临挑战,通过因果推断方法,可以更有效地识别和减少模型中的偏见和潜在风险。

  • 多模态LLMs的发展:在多模态LLMs领域,LLMs在整合文本和视觉信息方面取得了新进展,这为构建更全面的AI系统提供了新的可能性。

论文2:

Methods in Causal Inference Part 1: Causal Diagrams and Confounding

因果推断方法第一部分:因果图和混杂

方法

  • 因果图(DAGs):使用有向无环图(DAGs)来确定从非实验性观察数据中识别因果效应的可能性和方式。

  • 潜在结果框架:基于Neyman-Rubin潜在结果框架,扩展了因果推断的概念,以适应纵向治疗。

  • 图形结构规则:提出了五条基本的图形结构规则,用于从数据中识别因果效应。

创新点

  • 因果图的实用性:提供了实用的技巧和建议,以避免在报告和使用因果图时的常见陷阱。

  • 混杂问题的解决:通过图形结构规则,清晰地展示了如何识别和解决混杂问题,提高了因果效应估计的准确性。

  • 因果效应的识别:通过因果图,提供了一种系统性的方法来评估从数据中识别因果效应的可能性,这是以往方法中缺乏的。

论文3:

Placebo Tests for Causal Inference

用于因果推断的安慰剂测试

方法

  • 安慰剂测试:定义了安慰剂测试作为一种工具,用于评估研究设计相对于某些假设偏离的合理性。

  • 测试分类:根据研究设计被改变的方面(结果、处理或人群)以及被测试的假设类型(偏差假设或分布假设),对测试进行了分类。

创新点

  • 安慰剂测试的系统化:提供了一个全面的框架,明确了安慰剂测试的额外假设,这些假设可能很强,有时类似的假设会支持不同的程序,使研究者能够放宽研究设计的假设,而不仅仅是测试它们。

  • 测试结果的解释:通过正式框架,澄清了安慰剂测试结果如何提供关于研究设计假设有效性的信息,这在以往的文献中没有得到充分的解释。

  • 研究设计可信度的评估:通过安慰剂测试,可以更准确地评估实证研究设计的可信度,这对于社会科学研究尤为重要。

论文4:

Semiparametric Proximal Causal Inference

半参数近端因果推断

方法

  • 近端因果推断框架:在Miao, Geng, 和 Tchetgen Tchetgen的基础上,提出了一种新的近端因果推断框架,该框架在测量的协变量不能完美代理混杂机制时,提供了学习因果效应的机会。

  • 半参数理论:发展了一种半参数理论,用于近端估计平均处理效应(ATE),包括关键半参数模型的效率界限。

创新点

  • 非参数近端识别的平均处理效应:提出了一组新的条件,用于非参数近端识别平均处理效应,这在以往的研究中未被充分探讨。

  • 半参数效率界限:为ATE的识别函数在两个关键的半参数模型下建立了半参数效率界限,这为半参数模型的选择提供了理论基础。

  • 近端双重稳健和局部有效估计器:提出了一类近端双重稳健和局部有效估计器,这些估计器在至少一个模型正确指定的情况下是一致的,但在所有工作模型都正确指定时达到半参数效率界限,这在处理未测量的混杂时提供了新的估计策略。

小编整理了因果推断文代码合集

需要的同学

回复“因果推断”即可全部领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值