PCL 法向量估计OMP加速

本文介绍了如何使用PCL库中的NormalEstimationOMP类进行点云数据的法线估计,并结合PCLVisualizer进行可视化展示,展示了OpenMP并行计算的应用。
摘要由CSDN通过智能技术生成

记录


#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
//#include <pcl/features/normal_3d.h>
#include <pcl/features/normal_3d_omp.h>//使用OMP需要添加的头文件
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
using namespace std;
int main()
{
	//------------------加载点云数据-------------------
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
	if (pcl::io::loadPCDFile<pcl::PointXYZ>("I:\\test\\2.pcd", *cloud) == -1)
	{
		PCL_ERROR("Could not read file\n");
	}

	//------------------计算法线----------------------
	pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;//OMP加速
	pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);

	pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
	n.setNumberOfThreads(10);//设置openMP的线程数
	//n.setViewPoint(0,0,0);//默认为(0,0,0)
	n.setInputCloud(cloud);
	n.setSearchMethod(tree);
	n.setKSearch(30);//近邻点数量
	//n.setRadiusSearch(0.03);//半径搜素
	n.compute(*normals);//开始进行法向计

	//----------------可视化--------------
	boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Normal viewer"));

	//设置背景颜色
	viewer->setBackgroundColor(0.3, 0.3, 0.3);
	viewer->addText("faxian", 10, 10, "text");
	//设置点云颜色
	pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> single_color(cloud, 0, 225, 0);
	//添加坐标系
	viewer->addCoordinateSystem(0.1);
	viewer->addPointCloud<pcl::PointXYZ>(cloud, single_color, "sample cloud");

	viewer->addPointCloudNormals<pcl::PointXYZ, pcl::Normal>(cloud, normals, 20, 0.02, "normals");
	//设置点云大小
	viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "sample cloud");
	while (!viewer->wasStopped())
	{
		viewer->spinOnce(100);
		boost::this_thread::sleep(boost::posix_time::microseconds(100000));
	}

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

躺躺11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值