贝叶斯方法与Ridge回归的联系

本文探讨了贝叶斯方法与Ridge回归之间的联系。在正态分布假设下,最大似然估计与使用OLS解决线性回归相同。在贝叶斯框架中,通过引入参数的正态分布先验,后验概率的最大化转化为包含惩罚项的优化问题,与Ridge回归的正则化项一致,表明两者在特定条件下等效。
摘要由CSDN通过智能技术生成

贝叶斯方法与Ridge回归有什么联系?废话少说,我们直接来看。

为了方便说明问题,考虑一维的自变量,将一系列自变量排成向量的形式: x = ( x 1 , ⋯   , x N ) T \mathbf{x}=(x_1,\cdots,x_N)^T x=(x1,,xN)T,对应的目标函数为 t = ( t 1 , ⋯   , t N ) T \mathbf{t}=(t_1,\cdots,t_N)^T t=(t1,,tN)T

我们假设样本中每个 t t t都独立,且服从正态分布,分布的均值为 y ( x , w ) = ∑ j = 0 M w j x j y(x,\mathbf{w})=\sum_{j=0}^{M} w_j x^j y(x,w)=j=0Mwjxj(也可以不指定形式,只要是关于 x x x w \mathbf{w} w的函数即可),方差的倒数为 β \beta β,则似然函数为

p (

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值