Markov’s Inequality
中文叫马尔科夫不等式或马尔可夫不等式。
若随机变量 X X X只取非负值,则 ∀ a > 0 \forall a>0 ∀a>0,有
P ( X ≥ a ) ≤ E ( X ) a \mathbb{P} (X\ge a) \le \dfrac{\mathbb{E}(X)}{a} P(X≥a)≤aE(X)
证明:
取 Y a = a I ( X ≥ a ) Y_a=a\mathbb{I}(X\ge a) Ya=aI(X≥a),则必有 Y a ≤ X Y_a\le X Ya≤X,进而有 E ( Y a ) ≤ E ( X ) \mathbb{E}(Y_a)\le \mathbb{E}(X) E(Ya)≤E(X)。
而
E ( Y a ) = a