四元数的基本概念

\qquad 四元数是一种超复数,可视为复数的扩展。它是一种包含四个元的数,可表示为: Q = q r + q i = q 0 + q 1 i + q 2 j + q 3 k (1) Q=q_r+q_i=q_0+q_1i+q_2j+q_3k \tag{1} Q=qr+qi=q0+q1i+q2j+q3k(1) \qquad 其中 q 0 , q 1 , q 2 , q 3 q_0,q_1,q_2,q_3 q0,q1,q2,q3均为实数, q r = q 0 q_r=q_0 qr=q0称为实部, q i = q 1 i + q 2 j + q 3 k q_i=q_1i+q_2j+q_3k qi=q1i+q2j+q3k称为虚部。四元数的虚数单位 i , j , k i,j,k i,j,k满足以下运算法则: { i ⋅ i = j ⋅ j = k ⋅ k = − 1 ( a ) i ⋅ j = k , j ⋅ k = i , k ⋅ i = j , j ⋅ i = − k , k ⋅ j = − i , i ⋅ k = − j ( b ) (2) \begin{cases} i\cdot i=j\cdot j=k\cdot k=-1 &(a)\\ i\cdot j=k,j\cdot k=i,k\cdot i=j, j\cdot i=-k,k\cdot j=-i,i\cdot k=-j &(b)\end{cases} \tag{2} {ii=jj=kk=1ij=k,jk=i,ki=j,ji=k,kj=i,ik=j(a)(b)(2) \qquad 即: i 2 = j 2 = k 2 = i j k = − 1 (3) i^2=j^2=k^2=ijk=-1 \tag{3} i2=j2=k2=ijk=1(3) \qquad 可以看出式(2.a)中的运算规则与复数中虚数的运算法则完全相同,式(2.b)中的运算法则与三维空间中坐标轴单位矢量叉乘运算规则完全相同,因此四元数可以看作是四维空间中的一种数,其虚部 q i = q 1 i + q 2 j + q 3 k q_i=q_1i+q_2j+q_3k qi=q1i+q2j+q3k可以看成在三维空间中的映射。反之,一个三维矢量也可以看成一个实部为0的四元数。
\qquad 假设: P = p r + p i = p 0 + p 1 i + p 2 j + p 3 k (4) P=p_r+p_i=p_0+p_1i+p_2j+p_3k \tag{4} P=pr+pi=p0+p1i+p2j+p3k(4) Q = q r + q i = q 0 + q 1 i + q 2 j + q 3 k (5) Q=q_r+q_i=q_0+q_1i+q_2j+q_3k \tag{5} Q=qr+qi=q0+q1i+q2j+q3k(5) S = s r + s i = s 0 + s 1 i + s 2 j + s 3 k (6) S=s_r+s_i=s_0+s_1i+s_2j+s_3k \tag{6} S=sr+si=s0+s1i+s2j+s3k(6)
\qquad 若两个四元数相等,则它们对应的四个元分别相等,即: P = Q ⇔ { p 0 = q 0 p 1 = q 1 p 2 = q 2 p 3 = q 3 (7) P=Q \Leftrightarrow\begin{cases} p_0=q_0\\ p_1=q_1\\ p_2=q_2\\p_3=q_3 \end{cases} \tag{7} P=Qp0=q0p1=q1p2=q2p3=q3(7) \qquad 四元数的加减法定义为: P ± Q = ( p 0 + p 1 i + p 2 j + p 3 k ) ± ( q 0 + q 1 i + q 2 j + q 3 k ) = ( p 0 ± q 0 ) + ( p 1 ± q 1 ) i + ( p 2 ± q 2 ) j + ( p 3 ± q 3 ) k (8) \begin{aligned} P\pm Q&=(p_0+p_1i+p_2j+p_3k)\pm(q_0+q_1i+q_2j+q_3k)\\&=(p_0\pm q_0)+(p_1\pm q_1)i+(p_2\pm q_2)j+(p_3\pm q_3)k \end{aligned} \tag{8} P±Q=(p0+p1i+p2j+p3k)±(q0+q1i+q2j+q3k)=(p0±q0)+(p1±q1)i+(p2±q2)j+(p3±q3)k(8) \qquad 可以看出四元数加减法与复数加减法运算法则一致,不难验证四元数的加减法是满足交换律和结合律的,即有: P + Q = Q + P (9) P+Q=Q+ P \tag{9} P+Q=Q+P(9) ( P + Q ) + S = P + ( Q + S ) (10) (P+Q)+S=P+(Q+S) \tag{10} (P+Q)+S=P+(Q+S)(10) \qquad 四元数的乘法定义: P ⋅ Q = ( p 0 + p 1 i + p 2 j + p 3 k ) ⋅ ( q 0 + q 1 i + q 2 j + q 3 k ) = ( p 0 q 0 − p 1 q 1 − p 2 q 2 − p 3 q 3 ) + ( p 0 q 1 + p 1 q 0 + p 2 q 3 − p 3 q 2 ) i + ( p 0 q 2 + p 2 q 0 + p 3 q 1 − p 1 q 3 ) j + ( p 0 q 3 + p 3 q 0 + p 1 q 2 − p 2 q 1 ) k (11) \begin{aligned}P\cdot Q&=(p_0+p_1i+p_2j+p_3k)\cdot(q_0+q_1i+q_2j+q_3k)\\ &=(p_0q_0-p_1q_1-p_2q_2-p_3q_3)+(p_0q_1+p_1q_0+p_2q_3-p_3q_2)i\\&+(p_0q_2+p_2q_0+p_3q_1-p_1q_3)j+(p_0q_3+p_3q_0+p_1q_2-p_2q_1)k \end{aligned} \tag{11} PQ=(p0+p1i+p2j+p3k)(q0+q1i+q2j+q3k)=(p0q0p1q1p2q2p3q3)+(p0q1+p1q0+p2q3p3q2)i+(p0q2+p2q0+p3q1p1q3)j+(p0q3+p3q0+p1q2p2q1)k(11) \qquad 两个实部为0的四元数相乘,结果为: p i ⋅ q i = ( − p 1 q 1 − p 2 q 2 − p 3 q 3 ) + ( p 2 q 3 − p 3 q 2 ) i + ( p 3 q 1 − p 1 q 3 ) j + ( p 1 q 2 − p 2 q 1 ) k = − [ p 1 p 2 p 3 ] [ q 1 q 2 q 3 ] + [ i j k p 1 p 2 p 3 q 1 q 2 q 3 ] = − p i T q i + p i × q i (12) \begin{aligned} p_i\cdot q_i &=(-p_1q_1-p_2q_2-p_3q_3)+(p_2q_3-p_3q_2)i+(p_3q_1-p_1q_3)j+(p_1q_2-p_2q_1)k \\ &= -\begin{bmatrix}p_1\\p_2\\p_3 \end{bmatrix}\begin{bmatrix} q_1&q_2&q_3 \end{bmatrix}+ \begin{bmatrix} i&j&k \\p_1&p_2&p_3 \\q_1&q_2&q_3\end{bmatrix} \\ &=-p_i^Tq_i+p_i\times q_i \end{aligned} \tag{12} piqi=(p1q1p2q2p3q3)+(p2q3p3q2)i+(p3q1p1q3)j+(p1q2p2q1)k=p1p2p3[q1q2q3]+ip1q1jp2q2kp3q3=piTqi+pi×qi(12) \qquad 式(12)即实部为0的四元数与三维矢量运算规则之间的关系,可以看出其既包含了矢量点乘运算,也包含了矢量叉乘运算。
\qquad 若采用三维矢量运算法,四元数乘法可表示为: P ⋅ Q = ( p 0 + p i ) ⋅ ( q 0 + q v ) = p 0 q 0 + p 0 q i + q 0 p i + p i q i = ( p 0 q 0 − p i T q i ) + ( p 0 q i + q 0 p i + p i × q i ) (13) \begin{aligned}P\cdot Q &=(p_0+p_i)\cdot(q_0+q_v)=p_0q_0+p_0q_i+q_0p_i+p_iq_i \\ &=(p_0q_0-p_i^Tq_i)+(p_0q_i+q_0p_i+p_i\times q_i) \end{aligned} \tag{13} PQ=(p0+pi)(q0+qv)=p0q0+p0qi+q0pi+piqi=(p0q0piTqi)+(p0qi+q0pi+pi×qi)(13) \qquad 由于矢量叉乘是不满足交换律的,因而四元数乘法也不满足交换律,即 P ⋅ Q ≠ Q ⋅ P P\cdot Q\not=Q \cdot P PQ=QP。不过可以验证四元数乘法是满足交换律,即: ( P ⋅ Q ) ⋅ S = P ⋅ ( Q ⋅ S ) (14) (P\cdot Q )\cdot S=P\cdot (Q \cdot S) \tag{14} (PQ)S=P(QS)(14) \qquad 这与矩阵乘法的规律完全一致。若采用矩阵表示法,四元数乘法可表示为: P ⋅ Q = [ p 0 − p 1 − p 2 − p 3 p 1 p 0 − p 3 p 2 p 2 p 3 p 0 − p 1 p 3 − p 2 p 1 p 0 ] [ q 0 q 1 q 2 q 3 ] = M p Q = [ q 0 − q 1 − q 2 − q 3 q 1 q 0 q 3 − q 2 q 2 − q 3 q 0 q 1 q 3 q 2 − q 1 q 0 ] [ p 0 p 1 p 2 p 3 ] = M Q ′ P (15) P\cdot Q=\begin{bmatrix}p_0&-p_1&-p_2& -p_3\\ p_1&p_0&-p_3& p_2\\ p_2&p_3&p_0& -p_1\\ p_3&-p_2&p_1& p_0 \end{bmatrix} \begin{bmatrix} q_0\\q_1\\q_2\\q_3\end{bmatrix}=M_pQ=\begin{bmatrix}q_0&-q_1&-q_2& -q_3\\ q_1&q_0&q_3& -q_2\\ q_2&-q_3&q_0& q_1\\ q_3&q_2&-q_1& q_0 \end{bmatrix} \begin{bmatrix} p_0\\p_1\\p_2\\p_3\end{bmatrix}=M_Q'P \tag{15} PQ=p0p1p2p3p1p0p3p2p2p3p0p1p3p2p1p0q0q1q2q3=MpQ=q0q1q2q3q1q0q3q2q2q3q0q1q3q2q1q0p0p1p2p3=MQP(15) \qquad 或者 P ⋅ Q = [ p 0 − p i T p i p 0 I + ( p i × ) ] [ q 0 q i ] = [ q 0 − q i T q i q 0 I − ( q i × ) ] [ p 0 p i ] = [ p 0 q 0 − p i T q i p 0 q i + q 0 p i + p i × q i ] (16) P\cdot Q=\begin{bmatrix}p_0 &-p_i^T\\ p_i&p_0I+(p_i\times) \end{bmatrix}\begin{bmatrix}q_0 \\q_i\end{bmatrix}=\begin{bmatrix} q_0 &-q_i^T\\ q_i&q_0I-(q_i\times) \end{bmatrix} \begin{bmatrix} p_0\\p_i\end{bmatrix}=\begin{bmatrix} p_0q_0-p_i^Tq_i \\ p_0q_i+q_0p_i+p_i\times q_i\end{bmatrix}\tag{16} PQ=[p0pipiTp0I+(pi×)][q0qi]=[q0qiqiTq0I(qi×)][p0pi]=[p0q0piTqip0qi+q0pi+pi×qi](16)
\qquad 其中 M p = [ p 0 − p 1 − p 2 − p 3 p 1 p 0 − p 3 p 2 p 2 p 3 p 0 − p 1 p 3 − p 2 p 1 p 0 ] = [ p 0 − p i T p i p 0 I + ( p i × ) ] (17) M_p=\begin{bmatrix}p_0&-p_1&-p_2& -p_3\\ p_1&p_0&-p_3& p_2\\ p_2&p_3&p_0& -p_1\\ p_3&-p_2&p_1& p_0 \end{bmatrix} =\begin{bmatrix}p_0 & -p_i^T\\p_i& p_0I+(p_i\times)\end{bmatrix}\tag{17} Mp=p0p1p2p3p1p0p3p2p2p3p0p1p3p2p1p0=[p0pipiTp0I+(pi×)](17) M Q ′ = [ q 0 − q 1 − q 2 − q 3 q 1 q 0 q 3 − q 2 q 2 − q 3 q 0 q 1 q 3 q 2 − q 1 q 0 ] = [ q 0 − q i T q i q 0 I − ( q i × ) ] (18) M_Q'=\begin{bmatrix}q_0&-q_1&-q_2& -q_3\\ q_1&q_0&q_3& -q_2\\ q_2&-q_3&q_0& q_1\\ q_3&q_2&-q_1& q_0 \end{bmatrix} = \begin{bmatrix} q_0 & -q_i^T\\q_i& q_0I-(q_i\times)\end{bmatrix} \tag{18} MQ=q0q1q2q3q1q0q3q2q2q3q0q1q3q2q1q0=[q0qiqiTq0I(qi×)](18) \qquad 为了方便简写,可定义三维向量两种四维反对称矩阵,如下: ( p i ∗ ) 1 = [ 0 − p 1 − p 2 − p 3 p 1 0 − p 3 p 2 p 2 p 3 0 − p 1 p 3 − p 2 p 1 0 ] = [ 0 − p i T p i ( p i × ) ] (19) (p_i*)_1=\begin{bmatrix}0&-p_1&-p_2& -p_3\\ p_1&0&-p_3& p_2\\ p_2&p_3&0& -p_1\\ p_3&-p_2&p_1& 0 \end{bmatrix}=\begin{bmatrix}0 & -p_i^T\\p_i& (p_i\times)\end{bmatrix}\tag{19} (pi)1=0p1p2p3p10p3p2p2p30p1p3p2p10=[0pipiT(pi×)](19) ( p i ∗ ) 2 = [ 0 − p 1 − p 2 − p 3 p 1 0 p 3 − p 2 p 2 − p 3 0 p 1 p 3 p 2 − p 1 0 ] = [ 0 − p i T p i − ( p i × ) ] (20) (p_i*)_2=\begin{bmatrix}0&-p_1&-p_2& -p_3\\ p_1&0&p_3& -p_2\\ p_2&-p_3&0& p_1\\ p_3&p_2&-p_1& 0 \end{bmatrix}=\begin{bmatrix}0 & -p_i^T\\p_i& -(p_i\times)\end{bmatrix}\tag{20} (pi)2=0p1p2p3p10p3p2p2p30p1p3p2p10=[0pipiT(pi×)](20) \qquad ( p i ∗ ) 1 、 ( p i ∗ ) 2 (p_i*)_1、(p_i*)_2 (pi)1(pi)2分别称为第一、第二反对称矩阵。则式(17)和式(18)可简写为: M p = p 0 I + ( p i ∗ ) 1 M Q ′ = q 0 I + ( q i ∗ ) 2 (21) M_p =p_0I+(p_i*)_1\qquad M_Q'=q_0I+(q_i*)_2 \tag{21} Mp=p0I+(pi)1MQ=q0I+(qi)2(21) \qquad 四元数的共轭四元数定义为: Q ∗ = q r − q i = q 0 − q 1 i − q 2 j − q 3 k (22) Q^*=q_r-q_i=q_0-q_1i-q_2j-q_3k \tag{22} Q=qrqi=q0q1iq2jq3k(22) \qquad 满足以下运算规则: ( P + Q ) ∗ = P ∗ + Q ∗ (23) (P+Q)^*=P^*+Q^* \tag{23} (P+Q)=P+Q(23) ( P ⋅ Q ) ∗ = P ∗ ⋅ Q ∗ (24) (P\cdot Q)^*=P^*\cdot Q^* \tag{24} (PQ)=PQ(24) \qquad 四元数Q的模值(2-范数)定义为: ∥ Q ∥ = Q ∗ ⋅ Q = Q ⋅ Q ∗ = q 0 2 + q 1 2 + q 2 2 + q 3 2 (25) \lVert Q\rVert =\sqrt{Q^*\cdot Q}=\sqrt{Q \cdot Q^*}=\sqrt{q_0^2+q_1^2+q_2^2+q_3^2} \tag{25} Q=QQ =QQ =q02+q12+q22+q32 (25) \qquad 对于非零四元数,即 ∥ Q ∥ ≠ 0 \lVert Q\rVert \not=0 Q=0时,有 Q ∥ Q ∥ 2 ⋅ Q = Q ⋅ Q ∥ Q ∥ 2 = 1 (26) \frac{Q}{\lVert Q\rVert^2}\cdot Q=Q \cdot \frac{Q}{\lVert Q\rVert^2}=1 \tag{26} Q2QQ=QQ2Q=1(26) \qquad 非零四元数的逆可记作: Q − 1 = Q ∗ ∥ Q ∥ 2 (27) Q^{-1}=\frac{Q^*}{\lVert Q\rVert^2} \tag{27} Q1=Q2Q(27) \qquad 两个非零四元数的积的逆满足: ( P ⋅ Q ) − 1 = P ⋅ Q ∥ P ⋅ Q ∥ 2 = ( P ∗ ) ⋅ ( Q ∗ ) ∥ P ∥ 2 ⋅ ∥ Q ∥ 2 = P ∗ ∥ P ∥ 2 ⋅ Q ∗ ∥ Q ∥ 2 = P − 1 ⋅ Q − 1 (28) (P\cdot Q)^{-1}=\frac{P\cdot Q}{\lVert P\cdot Q\rVert^2}=\frac{(P^*)\cdot(Q^*)}{\lVert P\rVert^2 \cdot\lVert Q\rVert^2}=\frac{P^*}{\lVert P\rVert^2}\cdot\frac{Q^*}{\lVert Q\rVert^2}=P^{-1}\cdot Q^{-1} \tag{28} (PQ)1=PQ2PQ=P2Q2(P)(Q)=P2PQ2Q=P1Q1(28) \qquad 这与矩阵乘积的逆运算法则完全一致。
\qquad 类似复数三角表示法,四元数也可以表示: Q = ∥ Q ∥ ( c o s ϕ 2 + u s i n ϕ 2 ) (29) Q=\lVert Q\rVert(cos\frac{\phi}{2}+usin\frac{\phi}{2}) \tag{29} Q=Q(cos2ϕ+usin2ϕ)(29) \qquad 对于单位四元数,即当 ∥ Q ∥ = 1 \lVert Q\rVert=1 Q=1时,有: Q = q 0 + q i = c o s ϕ 2 + u s i n ϕ 2 (30) Q=q_0+q_i=cos\frac{\phi}{2}+usin\frac{\phi}{2} \tag{30} Q=q0+qi=cos2ϕ+usin2ϕ(30) \qquad 其中, q 0 = c o s ϕ 2 , q i = u s i n ϕ 2 且 q 0 2 + q i T q i = 1 q_0=cos\frac{\phi}{2},q_i=usin\frac{\phi}{2}且q_0^2+q^T_iq_i=1 q0=cos2ϕ,qi=usin2ϕq02+qiTqi=1; u u u为单位长度的三维向量,即 u T u = 1 u^Tu=1 uTu=1 ϕ \phi ϕ表示某种角度值。
\qquad 至此,我们证明了四元素的乘法不满足交换律、共轭以及求逆等运算规律均与矩阵相应的运算规律几乎完全一致,因此,这似乎暗示着四元数与矩阵之间存在某种内在联系。
\qquad 根据等效旋转矢量与方向余弦阵的关系有: C b i = I + s i n ϕ ( u × ) + ( 1 − c o s ϕ ) ( u × ) 2 = I + 2 s i n ϕ 2 c o s ϕ 2 ( u × ) + 2 s i n 2 ϕ 2 ( u × ) 2 = I + 2 c o s ϕ 2 ( s i n ϕ 2 u × ) + 2 ( s i n ϕ 2 u × ) 2 (31) \begin{aligned}C_b^i&=I+sin\phi(u\times)+(1-cos\phi)(u\times)^2\\ &=I+2sin\frac{\phi}{2}cos\frac{\phi}{2}(u\times)+2sin^2\frac{\phi}{2}(u\times)^2 \\ &=I+2cos\frac{\phi}{2}(sin\frac{\phi}{2}u\times)+2(sin\frac{\phi}{2}u\times)^2 \end{aligned} \tag{31} Cbi=I+sinϕ(u×)+(1cosϕ)(u×)2=I+2sin2ϕcos2ϕ(u×)+2sin22ϕ(u×)2=I+2cos2ϕ(sin2ϕu×)+2(sin2ϕu×)2(31) \qquad 其中 ϕ u \phi u ϕu为等效旋转矢量。将式(30)带入式(31)得: C b i = I + 2 q 0 ( q i × ) + 2 ( q i × ) 2 = I + 2 q 0 [ 0 − q 3 q 2 q 3 0 − q 1 − q 2 q 1 0 ] + 2 [ 0 − q 3 q 2 q 3 0 − q 1 − q 2 q 1 0 ] 2 = I + 2 [ 0 − q 0 q 3 q 0 q 2 q 0 q 3 0 − q 0 q 1 − q 0 q 2 q 0 q 1 0 ] + 2 [ − q 2 2 − q 3 2 q 1 q 2 q 2 q 3 q 1 q 2 − q 1 2 − q 3 2 q 2 q 3 q 1 q 3 q 2 q 3 − q 1 2 − q 2 2 ] = [ 1 − 2 ( q 2 2 + 2 q 3 2 ) 2 ( q 1 q 2 − q 0 q 2 ) 2 q 2 + q 2 q 3 2 ( q 0 q 3 + q 1 q 2 ) 1 − 2 ( q 1 2 + q 3 2 ) 2 ( q 2 q 3 − q 0 q 1 ) 2 ( q 1 q 3 − q 0 q 2 ) 2 ( q 0 q 1 + q 2 q 3 ) 1 − 2 ( q 1 2 + q 2 2 ) ] = [ q 0 2 + q 1 2 − q 2 2 + 2 q 3 2 ) 2 ( q 1 q 2 − q 0 q 2 ) 2 q 2 + q 2 q 3 2 ( q 0 q 3 + q 1 q 2 ) q 0 2 − q 2 2 + q 1 2 − q 3 2 ) 2 ( q 2 q 3 − q 0 q 1 ) 2 ( q 1 q 3 − q 0 q 2 ) 2 ( q 0 q 1 + q 2 q 3 ) q 0 2 − q 1 2 − q 2 2 + q 3 2 ] (32) \begin{aligned}C_b^i&= I+2q_0(q_i\times)+2(q_i\times)^2 \\ &=I+2q_0 \begin{bmatrix} 0&-q_3&q_2 \\ q_3&0&-q_1\\ -q_2&q_1&0 \end{bmatrix}+2\begin{bmatrix} 0&-q_3&q_2 \\ q_3&0&-q_1\\ -q_2&q_1&0\end{bmatrix}^2 \\ &= I+2\begin{bmatrix} 0&-q_0q_3&q_0q_2 \\ q_0q_3&0&-q_0q_1\\ -q_0q_2&q_0q_1&0 \end{bmatrix}+2\begin{bmatrix}-q_2^2-q_3^2&q_1q_2 &q_2q_3 \\q_1q_2&-q_1^2-q_3^2 &q_2q_3 \\q_1q_3&q_2q_3&-q1^2-q_2^2 \end{bmatrix} \\ &=\begin{bmatrix}1-2(q_2^2+2q_3^2)&2(q_1q_2 -q_0q_2)& 2q_2+q_2q_3\\ 2(q_0q_3+q_1q_2)&1-2(q_1^2+q_3^2)&2(q_2q_3-q_0q_1)\\ 2(q_1q_3-q_0q_2) & 2(q_0q_1+q_2q_3)&1-2(q_1^2+q_2^2)\end{bmatrix} \\ &=\begin{bmatrix}q_0^2+q_1^2-q_2^2+2q_3^2)&2(q_1q_2 -q_0q_2)& 2q_2+q_2q_3\\ 2(q_0q_3+q_1q_2)&q_0^2-q_2^2+q_1^2-q_3^2)&2(q_2q_3-q_0q_1)\\ 2(q_1q_3-q_0q_2) & 2(q_0q_1+q_2q_3)&q_0^2-q_1^2-q_2^2+q_3^2 \end{bmatrix}\end{aligned} \tag{32} Cbi=I+2q0(qi×)+2(qi×)2=I+2q00q3q2q30q1q2q10+20q3q2q30q1q2q102=I+20q0q3q0q2q0q30q0q1q0q2q0q10+2q22q32q1q2q1q3q1q2q12q32q2q3q2q3q2q3q12q22=12(q22+2q32)2(q0q3+q1q2)2(q1q3q0q2)2(q1q2q0q2)12(q12+q32)2(q0q1+q2q3)2q2+q2q32(q2q3q0q1)12(q12+q22)=q02+q12q22+2q32)2(q0q3+q1q2)2(q1q3q0q2)2(q1q2q0q2)q02q22+q12q32)2(q0q1+q2q3)2q2+q2q32(q2q3q0q1)q02q12q22+q32(32) \qquad 式(32)建立了单位四元数与方向余弦阵的关系,也表明了单位四元数三角表示法式(30)的几何意义。一般为了明确的表述两坐标系间的转动关系,常在四元数的右侧加上上下标,如 Q b i Q_b^i Qbi。则式(30)中的 u u u表示动坐标系 b b b系相对于参考坐标系 i i i系的单位转轴、 ϕ \phi ϕ表示旋转角度。则使用角标后,共轭四元数可表示为 Q i b = ( Q b i ) ∗ Q_i^b=(Q_b^i)^* Qib=(Qbi),这与矩阵的转置类似。

参考文献
[1] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安:西北工业大学出版社, 2020.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值