【AI大模型知识库】Dify+DeepSeek V3,知识库再次起飞!确实可以封神了

前言

有如下几点更新(省流版):

  1. 上下文长度更长:支持的上下文长度由64k->128k,上下文理解能力增强,并支持更长的上下文长度;

  2. 参数量更大:参数量由原来的671b,增加到685b

  3. 编程、数学能力显著提升;

  4. 生成速度更快:从20 TPS提升至60 TPS(不过这个肯定还是吃算力,以及服务器压力过大的话也会变慢);

  5. 多位博主实测,其生成网页,svg等页面的审美大幅提升,直逼Claude3.7。

我是第一时间接入dify进行了实测:

用dify的多模型调试功能,对比了新版DeepSeek V3和旧版DeepSeek V3知识库问答效果,发现使用新版效果提升非常明显!

所以我第一时间就让客户把V3模型更新到新版使用了

图片

接下来我带大家在dify接入新版deepseek v3,并看下实测效果。

获取新版DeepSeek V3 API

老规矩,要想接入大模型就要获取老三样:

模型名称、API地址、apikey

openrouter真滴卷,deepseek昨天才开源的新版deepseek v3,它立马就上线了(关键api还是免费使用)。

甚至连deepseek官网都没有通知,我都不知道deepseek官方api到底有没有更新到新版v3,而且就算更新了,估计调用的人也很多,到时候可能又会卡

openrouter地址:

https://openrouter.ai/

访问openrouter,首页就能看到新版V3,点击进入

图片

模型名称: deepseek/deepseek-chat-v3-0324:free

如果没有apikey可以先创建

顺便说一下API地址是:

https://openrouter.ai/api/v1

图片

接入dify并测试知识库效果

进入dify->右上角头像->设置->模型供应商

找到openrouter,点击安装

因为是调用github,可能会有点慢,或者失败,多试几次即可

图片

在安装好的供应商列表找到openrouter,点击设置

把openrouter的apikey粘贴到下图位置,保存

图片

这里会自动读取相关模型,但是自动读取到的模型里面并没有新版deepseek v3,所以我们需要额外添加

点击添加模型,填写模型名称和apikey,保存

图片

接下来,我直接用上次测试minimax-01的知识库来对新版deepseek v3进行测试。

感兴趣的朋友可以看下之前这篇:使用了不同的方式构建知识库,并且当你的知识库内容非常庞大的时候,更适合用minimax-01

在bot的编辑页面,点击模型参数配置->多个模型进行调试

图片

这里我开了两个模型,一个是刚刚配置的openrouter的新版v3,一个是硅基流动的旧版v3

这时,我在输入框发送一个问题,两边就会同时执行,用来测试不同模型的效果非常方便、直观。

图片

从上面第一个问题可以看出,虽然两边都回答正确,但是新版v3更详细

我们在看看第二个问题(下图)

回答的内容都正确,但还是新版V3更详细(左边新版V3,右边旧版V3)

图片

图片

看看第三个问题: 有哪些浏览器插件?(下图)

我知识库里面提到的插件就只有豆包(海外cici、和国内版),以及kimi Copilot。旧版V3还是容易出现幻觉,回答内容里面凭空出现了沉浸式翻译、和ChatGPT sidebar,,,

而新版V3这边回答正确,还给出了一个表格进行对比,以及贴心的推荐了使用场景,这就是上下文长度和理解能力增强的表现。

图片

图片

第四个问题: 如何降低论文AI率?

知识库中提到了两种,一种是海外Humanizer Pro,一种是智谱的Humanizer Pro,新版V3两种都提到了,而旧版V3缺少了智谱的Humanizer Pro。

图片

图片

当然,测试不止上面给出的4个,我进行了很多轮测试

实测下来,真的新版DeepSeek V3,提升不止亿点点

上下文理解能力显著增强,回复更加详细不容易出现幻觉prompt理解能力增强,更加遵守prompt。经过多次测试,发现回复的内容,习惯性的会增加表格,进行对比(这点太贴心了)

所以,现在新版DeepSeek V3应该是目前最具性价比的大模型了。

各方面能力都直逼Claude3.7,但API甚至还能免费用。

不过openrouter的新版deepseek v3接口有点不太稳,偶尔会卡**住几秒到几十秒才继续回复,生产环境建议等火山、硅基流动等接入之后在切换

总结一下,如果您的知识库数量非常庞大,推荐使用minimax-01(因为它有最长上下文-400万tokens,而且比deepseek API还便宜)

如果您的知识库数据量一般,推荐直接上新版DeepSeek V3。

这个数据量多大 算庞大呢?不好说,可以两个都使用,对比一下效果就知道选谁了。

好了,以上就是本期所有了

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>嗯,用户想在Docker里配置DifyDeepSeek连接本地知识库。首先,我需要回忆一下DifyDeepSeek的基本配置步骤。根据引用[3],Dify的安装需要克隆仓库、设置环境变量并用docker compose启动。那如何让DeepSeek集成进去呢?可能需要在Dify的配置里指定模型路径或API端点,尤其是本地部署的DeepSeek模型。 接下来,本地知识库的连接。Dify支持RAG,可能需要将本地的文档路径挂载到Dify的容器里,或者配置数据库连接。用户提到的是本地知识库,所以可能是指文档存储的位置。在docker compose文件中,可能需要添加volume挂载,把宿主机的文档目录映射到容器内相应的路径。 然后,检查环境变量,特别是模型相关的设置,比如DEEPKEEP_MODEL_PATH或者API密钥。如果DeepSeek是通过API访问的,可能需要配置API密钥;如果是本地运行的模型,可能需要设置本地服务的地址和端口。 还要考虑网络配置,确保Dify容器能访问DeepSeek服务。如果DeepSeek也在Docker中运行,可能需要使用同一个Docker网络,或者通过links连接。用户的问题可能涉及到多个容器之间的通信,需要确认docker compose中的服务定义是否正确关联。 另外,查看Dify的文档是否有关于集成本地模型的具体步骤,比如修改哪个配置文件或环境变量。引用[3]提到在.env文件中配置环境变量,可能需要在这里添加DeepSeek的相关参数。 最后,测试配置后的系统是否能正确调用DeepSeek处理知识库的数据。可能需要进入Dify的管理界面,创建应用并选择DeepSeek作为模型,然后上传文档测试RAG功能。如果遇到连接问题,检查日志,docker compose logs 服务名,看看是否有网络错误或配置错误。 总结步骤应该是:安装Dify,配置环境变量,部署DeepSeek模型,挂载知识库目录,设置模型连接参数,启动服务并测试。需要确保每一步的配置正确,特别是路径和网络设置。</think>### 分步指南:Docker 中配置 DifyDeepSeek 连接本地知识库 #### 1. 基础环境准备 **步骤说明**:确保 Docker 服务已正确安装并运行 ```bash # 启动 Docker 服务并设置开机自启 sudo systemctl start docker sudo systemctl enable docker ``` 引用[^1]提到的基础操作需优先完成,确保容器环境正常[^1]。 --- #### 2. 部署 Dify 平台 **步骤说明**:通过 Docker Compose 启动 Dify 容器 ```bash # 克隆 Dify 仓库并进入目录 git clone https://github.com/langgenius/dify.git cd dify/docker # 复制环境变量模板并修改配置 cp .env.example .env # 编辑 .env 文件(需指定本地知识库路径和模型参数) vim .env # 启动 Dify 容器 docker compose up -d ``` 在`.env`文件中需关注以下关键参数: ```bash # 本地知识库存储路径映射(示例) VOLUME_PATH=/path/to/local/knowledge:/app/knowledge # DeepSeek 模型集成参数(根据实际部署方式调整) DEEPSEEK_API_KEY=your_api_key DEEPSEEK_MODEL_ENDPOINT=http://deepseek-container:port/v1 ``` 引用[^3]强调了环境变量对服务连接的重要性[^3]。 --- #### 3. 配置 DeepSeek 本地服务 **场景分析**: - **若使用 API 服务**:直接在 Dify 后台配置 API 密钥和端点 - **若本地部署模型**:需在 Docker 中运行 DeepSeek 容器并与 Dify 网络互通 **示例配置**: ```bash # 创建共享网络(若需要容器间通信) docker network create ai-network # 启动 DeepSeek 容器(假设已构建镜像) docker run -d --name deepseek \ --network ai-network \ -p 8000:8000 \ deepseek-image:latest ``` 在 Dify模型管理界面添加自定义模型,填写容器内服务地址。 --- #### 4. 集成本地知识库 **操作步骤**: 1. 在 Dify 控制台创建应用,启用 **RAG 功能** 2. 通过 **数据集管理** 上传本地文档(需确保容器内路径可访问) 3. 在应用工作流中绑定 DeepSeek 模型知识库数据集 **关键配置点**: - 挂载本地知识库目录到容器(通过 Docker 卷映射) - 数据集解析设置需匹配文档格式(如 PDF/Markdown) --- #### 5. 验证与调试 **验证方法**: ```bash # 查看容器日志确认服务状态 docker compose logs -f dify-worker # 测试知识库检索功能 curl -X POST http://localhost/api/v1/knowledge-test \ -H "Content-Type: application/json" \ -d &#39;{"query": "测试问题"}&#39; ``` 若返回结果包含知识库内容,则集成成功。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值