DETR(DEtection TRansformer)是一个基于Transformer结构的目标检测算法,它的特点是在检测过程中不需要使用NMS(Non-Maximum Suppression,非极大值抑制)。其基本思想是将目标检测任务转化为一个直接预测类别和位置的回归问题,它尝试为每个目标生成一个独特的bounding box。
在传统的目标检测方法中,模型会生成大量候选框,然后利用NMS等方法去除冗余的、重叠度高的候选框,从而确定最终的检测结果。但在DETR中,模型直接生成固定数量的预测,每个预测由一个类别和一个bounding box组成。这个固定数量的预测数量一般设置为图像中可能出现的目标数量的最大值。
为了实现这个目标,DETR引入了一个新的损失函数,叫做二分匹配损失(bipartite matching loss)。这个损失函数会在预测和真实目标之间建立一种一对一的匹配关系。具体来说,它会根据预测和真实目标之间的距离,为每个真实目标找到一个最匹配的预测,然后只计算这些匹配对的损失。通过这种方式,每个真实目标都只会有一个与之对应的预测,这就避免了在一个目标附近生成多个bounding box的问题。
因此,DETR的主要优点是其简单、端到端的结构,它避免了在预测过程中需要复杂的后处理步骤,如NMS。这种设计使得DETR的预测过程更加直接和清晰。