【LLM+错误信息检测】DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection

研究提出DELL方法,利用大型语言模型在新闻真实性判断中生成反应、解释和专家预测,通过模拟交互、丰富上下文和融合专家提升性能,实验显示优于现有方法16.8%的F1得分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection 为基于 LLM 的错误信息检测 生成回应和解释

论文地址
代码地址暂无
在这里插入图片描述

Abstract

Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.

大型语言模型受限于事实性和幻觉方面的挑战,无法直接用于判断新闻文章的真实性,而事实准确性是最重要的。在这项工作中,我们提出了 DELL方案,该方案确定了误报检测的三个关键阶段,其中 LLM 可以作为pipeline的一部分:

  1. LLM 可以生成新闻反应,以代表不同的观点,并模拟用户与新闻的交互网络;
  2. LLM 可以生成代理任务(如情感、立场)的解释,以丰富新闻文章的上下文,并产生专门从事新闻理解各个方面的专家;
  3. LLM 可以合并特定任务的专家,并通过合并不同专家的预测和置信度分数来提供整体预测。

使用三个 LLM 在七个数据集上进行的广泛实验表明,DELL 在宏观 f1 分数上比最先进的基线高出 16.8%。进一步的分析表明,生成的反应和解释对错误信息检测大有帮助,而我们提出的由 LLM 引导的专家合并则有助于产生更好的校准预测。

Results

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 关于 Guardian 运行时框架的文档与实现细节 Guardian 是一种运行时框架,旨在支持基于大语言模型 (LLM) 的用户界面探索。其核心目标是利用 LLM 技术来增强用户体验并简化复杂系统的交互过程[^1]。 #### 主要特性 该框架的主要特点包括以下几个方面: - **动态上下文感知**:Guardian 能够实时分析用户的输入以及当前的应用状态,并据此调整响应行为。 - **自适应学习能力**:通过持续收集用户反馈数据,Guardian 不断优化自身的预测能力和推荐策略。 - **模块化设计架构**:整个系统被划分为多个独立组件,便于开发者针对具体需求定制扩展功能。 以下是构建这样一个框架可能涉及的关键技术要点: #### 数据流处理机制 为了有效管理和传递信息,在内部实现了高效的数据管道解决方案。此部分负责接收来自前端的各种事件触发信号,并将其转化为适合传送给后端 AI 模型的形式。 ```python def process_event(event_data): """ 处理接收到的UI事件数据 参数: event_data(dict): 包含事件详情的信息字典 返回值: processed_result(str): 经过初步解析后的字符串表示形式的结果 """ try: # 对原始数据做必要的清理工作 cleaned_info = clean_input(event_data) # 将清洗过的资料转换成可供后续使用的标准格式 formatted_message = format_for_model(cleaned_info) return formatted_message except Exception as e: log_error(e) ``` #### 权限管理集成 如果计划在一个完整的 Web 应用环境中部署,则还需要考虑安全性因素。此时可以借助 `django-rest-framework-guardian` 提供的支持,无缝衔接既有业务逻辑的同时保障敏感操作的安全性[^2]。 例如定义某些特定视图只允许拥有相应对象级别权限的角色访问: ```python from rest_framework import permissions, viewsets import guardian.shortcuts class SpecialResourceViewSet(viewsets.ModelViewSet): permission_classes = [permissions.DjangoObjectPermissions] def get_queryset(self): user = self.request.user queryset = super().get_queryset() accessible_items = guardian.shortcuts.get_objects_for_user( user, 'app_name.view_specialresource', klass=queryset.model ) return queryset.filter(id__in=[item.id for item in accessible_items]) ``` 以上代码片段展示了如何结合 DRF 和 django-guardian 实现更精细的访问控制规则设定方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值