【多标签 零样本 主题推理 】Zero-Shot Multi-Label Topic Inference with Sentence Encoders and LLMs

Zero-Shot Multi-Label Topic Inference with Sentence Encoders and LLMs 利用句子编码器和 LLM 进行零样本多标签主题推理

EMNLP 2023 (2023.6.23截稿/2023.12.6开会)

论文地址
代码暂无
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Abstract

In this paper, we conducted a comprehensive study with the latest Sentence Encoders and Large Language Models (LLMs) on the challenging task of “definition-wild zero-shot topic inference”, where users define or provide the topics of interest in real-time. Through extensive experimentation on seven diverse data sets, we observed that LLMs, such as ChatGPT-3.5 and PaLM, demonstrated superior generality compared to other LLMs, e.g., BLOOM and GPT-NeoX. Furthermore, Sentence-BERT, a BERT-based classical sentence encoder, outperformed PaLM and achieved performance comparable to ChatGPT-3.5.

在本文中,我们利用最新的句子编码器和大型语言模型(LLM)对 "definition-wild zero-shot主题推理 "这一具有挑战性的任务进行了全面研究。

通过在七个不同的数据集上进行广泛实验,我们发现,与其他 LLM(如 BLOOM 和 GPT-NeoX)相比,ChatGPT-3.5 和 PaLM 等 LLM 表现出更优越的通用性。

此外,基于 BERT 的经典句子编码器 Sentence-BERT 的表现优于 PaLM,其性能可与 ChatGPT-3.5 相媲美。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值