关于传递函数的频率响应和低通滤波器

关于传递函数的频率响应和低通滤波器

参考资料:【动态系统的建模与分析】9_一阶系统的频率响应_低通滤波器_Matlab/Simulink分析_哔哩哔哩_bilibili

以前关于这部分只是知道了而已,并没有用MATLAB认真试验过。这里借着DR_CAN老师的课程重新复习一下。

下面讨论一个简单的一阶线性系统的传递函数:
G ( s ) = a s + a (1) G(s)=\frac{a}{s+a} \tag1 G(s)=s+aa(1)
分析式(1)的频率响应,将 s = j ω s=j\omega s=jω代入,可得
G ( j ω ) = a a + j ω = a 2 a 2 + ω 2 + ( − a ω a 2 + ω 2 ) j (2) G(j\omega)=\frac{a}{a+j\omega}=\frac{a^2}{a^2+\omega^2}+(-\frac{a \omega}{a^2+\omega^2})j \tag2 G(jω)=a+jωa=a2+ω2a2+(a2+ω2aω)j(2)
根据式(2),可以分别得到该系统的幅值和相角的函数表示。根据频率响应的理论,输出信号与输入信号的幅值之比就是 ∣ G ( j ω ) ∣ |G(j\omega)| G(jω),相角之差就是 ϕ a \phi_a ϕa 当然,这里的证明涉及了大量的计算,具体可以去看DR_CAN老师的推导过程(【动态系统的建模与分析】8_频率响应_详细数学推导 G(jw)_滤波器_哔哩哔哩_bilibili)。
∣ G ( j ω ) ∣ = 1 1 + ( ω a ) 2 ϕ a = arctan ⁡ ω a (3) \begin{aligned} |G(j\omega)|&=\frac{1}{\sqrt{1+(\frac{\omega}{a})^2}} \\ \phi_a&=\arctan{\frac{\omega}{a}} \end{aligned} \tag3 G(jω)ϕa=1+(aω)2 1=arctanaω(3)
根据幅值函数,可以发现:当 ω = a \omega=a ω=a时,幅值从原来的1衰减到了原来的0.707。也就是说,该系统的截止频率为 ω c = a \omega_c=a ωc=a 当输入信号的频率大于截止频率时,该信号的幅值就会被快速衰减,这也就是低通滤波器的意义。

在这里插入图片描述

同样地,根据相角函数,可以发现:当 ω \omega ω越大时,相角偏移就会越大,最大相角偏移为90°。

根据系统的截止频率,低通滤波器会尽量维持频率低于 ω c \omega_c ωc的信号,尽量衰减频率高于 ω c \omega_c ωc的信号。

下面利用Simulink进行低通滤波器的实现。仿真模型如下图所示。

在这里插入图片描述

其中,低通滤波器中的参数 a = 1 a=1 a=1。输入信号由幅值为1、频率为1HZ的正弦信号与高频噪声组成。可以发现,正弦信号的频率正好是低通滤波器的截至频率。也就是说,正弦信号通过该滤波器后,会损失约0.293的幅值;而高频噪声的频率远远高于截至频率,因此其幅值会被极大的衰减。

在这里插入图片描述

由上图可知,输入信号在经过低通滤波器后,基本上滤除了大部分的噪音,但是由于输入正弦信号的频率等于截止频率,因此幅值出现了较大的损失,且相角偏移也有45°。

若要减少输入信号的幅值损失和相角偏移,那么最好就是让低通滤波器的截至频率尽量大于输入信号的频率;但是,另一方面,截止频率的增加也会影响低通滤波器的降噪能力。

在这里插入图片描述

上图是将低通滤波器的截止频率修改为 a = 10 a=10 a=10后得到的仿真结果。可以发现,随着截止频率的增加,虽然减少了输入正弦信号的幅值损失和相角偏移,但同样削弱的滤波器的降噪能力。

### 回答1: 在强化学习中,Q值高的传递函数通常被称为“高折现”,它表示在未来的时间步上获得的奖励对当前状态的贡献较大。因此,可以将高折现视为更注重长期回报的策略。 与低通滤波器类似,高折现可以平滑Q值函数的变化,使其更加稳定,从而提高学习的效率。但是,高折现并不是一个真正的滤波器,因为它并不是通过减少高频信号来减少噪声的影响,而是通过增加未来奖励的影响来平滑Q值函数。 ### 回答2: Q值高的传递函数不能被简单地理解为低通滤波器传递函数为一个系统的频率响应,用于描述输入信号的频率成分经过系统后的输出响应。Q值是描述传递函数带宽的一个参数。 低通滤波器是一种能够传递低频信号而抑制高频信号的滤波器。它的传递函数在低频时具有较高增益,而在高频时逐渐下降。Q值较高的系统传递函数在某个中心频率附近会表现出较高的幅度增益,但并不意味着它是低通滤波器。 Q值较高的传递函数通常与共振现象相关。它们可能出现在各种系统中,包括机械、电子声学系统等。在这些系统中,Q值的增加会导致系统在某个频率附近产生共振现象,响应幅度达到峰值。此时,传递函数的增益并不是在低频时最大,而是在中心频率附近最大。 因此,Q值高的传递函数低通滤波器并没有直接的关系。低通滤波器是一种特定的频率响应形式,而Q值高的传递函数则与共振现象相关。 ### 回答3: 在强化学习中,Q值高的传递函数通常是指具有较高数值的状态-动作对价值函数。Q值代表了在特定状态下采取特定动作所能获得的累积奖励,因此Q值高意味着该状态-动作对具有较大的奖励期望。 与低通滤波器相比,Q值高的传递函数在一定程度上可以类比为低通滤波器低通滤波器是一种能够通过去除高频部分而保留低频部分的信号处理器,可以使得信号更加平滑稳定。类似地,Q值高的传递函数可以将高奖励频率部分去除,从而使得智能体在决策时更加注重长期累积奖励,而忽略瞬时奖励。 然而,Q值高的传递函数并不完全等同于低通滤波器低通滤波器通过定义截止频率控制信号处理的效果,而Q值高的传递函数是通过强化学习算法进行调整以达到最优策略的目标。Q值高的传递函数实质上通过学习反馈机制改进智能体的决策策略,使其能够更好地适应环境变化长期奖励积累。 综上所述,Q值高的传递函数可以在一定程度上类比为低通滤波器,但二者在实际作用实现机制上有着不同之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值