随着现代医学的不断发展,蛋白质组学逐渐成为生物学研究的重要组成部分。其中,血浆蛋白质组学因其独特的研究对象和广泛的应用前景,备受科研人员的关注。血浆是血液的重要组成部分,含有丰富的蛋白质。这些蛋白质不仅反映了机体的生理状态,还能在一定程度上反映疾病的进展。血浆蛋白质组学采用了先进的质谱技术和生物信息学分析方法,只需要采集少量的血液样本便可实现对血浆中蛋白质的全面分析,具有高灵敏度、高通量、无创性和可重复性等特点,对于揭示临床疾病发生发展的分子机制,为疾病的早期诊断、预后评估和个性化治疗提供重要的依据。那么,如何使用血浆蛋白质组学进行疾病标志物筛选呢?接下来让我们通过几篇高分文章一起学习一下血浆蛋白质组学常用研究思路吧!
01
血浆蛋白质组学绘制血浆蛋白质-疾病图谱
研究人员通过分析UK Biobank数据库绘制了包含2920种与疾病相关的血浆蛋白和 986 种健康相关特征的最全面的蛋白质图谱。该图谱揭示了168100个蛋白质-疾病关联和554488个蛋白质-性状关联,并发现超过 650 种蛋白质在至少 50 种疾病中共享,同时有超过 1000种蛋白显示出性别和年龄异质性。此外,蛋白质丰度在疾病鉴别方面显示巨大的潜力,在183种疾病中的AUC值超过0.80。最后,研究人员整合蛋白质数量性状位点数据确定了 474 个致病蛋白,并提供了 37 个药物重新定位机会和 26 个具有良好的安全性的潜在治疗靶点。
02
血浆蛋白质组学绘制脓毒症蛋白质图谱
作者收集了1189名脓毒症患者和422名对照样本的2612个样本,利用高通量串联质谱进行血浆蛋白质组学分析。结果发现11种蛋白质在脓毒症中含量最高,并且根据蛋白差异构建机器学习模型可以有效区分脓毒症患者和对照患者(AUC = 100.0%);通过对所有时间点的脓毒症发现队列的蛋白定量进行聚类分析,确定了基于脓毒症血浆蛋白质组的聚类(SPC1/2/3);根据脓毒症发现队列开发了SPC预测模型(AUC ≥ 95%),并将其应用于脓毒症验证队列,实现死亡率和严重程度测量值的关联结果。这项工作揭示了解脓毒症反应状态、疾病过程和结果提供血浆蛋白特征,有助于开发脓毒症潜在的生物标志物,为脓毒症的精准医学方法提供理论支撑。
03
血浆蛋白质组学发现巨细胞动脉炎疾病标志物
研究人员利用血浆蛋白质组学分析了30例巨细胞动脉炎(Giant cell arteritis,GCA)患者及30例年龄/性别/种族匹配的非疾病对照样本中7000多种血浆蛋白质特征,生成血浆蛋白组图谱。结果显示,537 种蛋白质在活性 GCA 和对照之间差异表达,781种蛋白质在非活性 GCA 和对照之间差异表达。此外,作者还发现 16 种蛋白与活动性 GCA 患者的疾病活动相关。通过机器学习构建预测模型能够准确区分活性GCA、非活性GCA以及对照样本(10倍交叉验证准确率分别为95.0%和98.3%)。
04
血浆蛋白质组学可在症状出现前7年内识别帕金森病预测生物标志物
研究人员分析了99名近期被诊断为帕金森病(PD)的患者、72名出现快速眼动睡眠行为障碍但还未出现帕金森相关运动障碍的患者(iRBD)以及36名健康对照患者(HC)的血浆蛋白质组学结果,共发现23种蛋白质在PD和HC之间差异表达。通过构建机器学习模型,作者筛选了包含8个蛋白预测因子(GRN、MASP2、HSPA5、PTGDS、ICAM1、C3、DKK3和SERPING1)的模型,该模型能准确区分帕金森患者和正常对照人群(AUC = 100.0%)。该生物标志物组提供了保护性和有害机制的独特特征,最终触发氧化应激和神经炎症,导致α-突触核蛋白聚集和LB形成。该特征在运动/认知症状(3期)发生前长达7年就已经存在于前驱非运动(2期NSD)中,支持iRBD的高特异性及其向PD/DLB 的高转化率。未来,通过进一步验证,这种血液检查可以帮助识别有发生PD/DLB风险的受试者,并将其分层用于即将进行的预防试验。
05
血浆蛋白质组学鉴定急性肾小管损伤严重程度的生物标志物
研究人员对434名经活检证实的肾病患者血浆使用SomaScan蛋白质组学平台进行血浆蛋白质组分析,经多变量调整和多次测试校正后,发现156中独特蛋白与急性肾小管损伤(ATI)相关,其中126种表达增加的蛋白质和30种表达降低的蛋白与ATI严重程度独立相关。与ATI严重程度正相关的蛋白包括SPP1、MRC-1、TNC、NTN4以及MZB1;与ATI严重程度负相关的蛋白包括SERPINA5、BCHE、NPS、SERPINNA4以及AHSG。与ATI相关的156中独特蛋白质中,确定了与ATI发病机制相关的7条关键信号通路,包括细胞器内腔、内质网内腔和免疫系统。
综上,以上几篇文章都采用了较为经典的血浆蛋白质组学研究方法,首先在发现队列中使用非靶向蛋白定量技术DIA高通量地筛选出差异表达蛋白质,然后结合临床表型、蛋白质功能等信息缩小关注范围。随后,结合集成机器学习、随机森林分析等数据挖掘方法,最终筛选出适用于疾病早期诊断、疾病监测、疾病分型、药物靶点研究等方向的多个蛋白质组成的panel。
伯远医学引进了华中地区首台Orbitrap Astral高分辨率质谱仪,分辨率可达24万,DIA的隔离窗口可窄至2Da,具有高分辨率、高灵敏度以及深覆盖范围的特点;此外,Orbitrap Astral质谱仪拥有极高的检测通量,能够在8分钟内鉴定8000多个蛋白质,每天检测样本最多可至180个;在定量分析方面,Orbitrap Astral质谱仪定量线性范围可达5个数量级,能够准确检测从高丰度到低丰度的蛋白质。伯远医学Astral-DIA蛋白质组学服务基于先进的Orbitrap Astral质谱平台,提供高通量、高灵敏度的蛋白质组学分析。提供从样本前处理、上机检测到实验报告的一站式解决方案,适用于基因功能研究、疾病标志物筛选、药物作用靶点研究等多个领域,欢迎大家前来咨询!!!
参考文献
[1]Deng YT, You J, He Y, et al. Atlas of the plasma proteome in health and disease in 53,026 adults[J]. Cell, 2025, 188(1): 253-271.e7.
[2]Mi YX, Burnham K L, Charles P D, et al. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in response[J]. Sci Transl Med, 2024, 16(750): eadh0185.
[3]Cunningham K Y, Hur B, Gupta V K, et al. Plasma proteome profiling in giant cell arteritis[J]. Ann Rheum Dis, 2024, 83(12): 1762-1772.
[4]Jenny H, Michael B, Mohammed D, et al. Plasma proteomics identify biomarkers predicting Parkinson’sdiseaseupto7years before symptom onset[J]. Nat Commun, 2024, 15(1): 4759.
[5]Schmidt I M, Surapaneni A L, Zhao R, et al. Plasma proteomics of acute tubular injury[J]. Nat Commun, 2024, 15(1): 7368.