区分点2:深度学习各网络层顺序大致情况

本文详细解释了在神经网络中,为何通常先进行池化操作后再应用ReLU激励函数。通过实例对比,阐述了先ReLU再池化可能导致信息丢失,而先池化能保持信息完整性的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络层顺序

Conv / FC =》Batch Normalization =》PoolMax(池化) =》ReLu(激活层) =》dropout =》Conv / FC =》。。。。。。

一、卷积、池化、激励函数的顺序

顺序:卷积---池化---激励函数

我们知道卷积肯定是在第一层,毕竟 σ(wx+b),wx+b 就是卷积操作,那为什么池化要在激励函数之前呢?

原因解析:假设激励函数是 relu 激励函数:
在这里插入图片描述
假设我们卷积后的值为:3,-2,1,2 ;


对于 avg_poolling :

先 relu 再池化:当经过 relu 函数之后,得到的值为:relu(3) = 3,relu(-2) = 0,relu(1) = 1,relu(2) = 2,

则接下来经过 avg_pooling 结果为 ( 3+0+1+2 ) / 4 = 7/4

先池化在 relu:经过 avg_pooling 结果为 (3-2+1+2)/4 = 4/4 = 1, 再经过 relu 函数,最终结果为 relu (1) = 1 。


我们看到,其实这两种操作后,得到的结果是不一样的。如果我们先 relu 再池化,会将卷积后的第二个值 -2 给过滤掉,当我们紧接着做 avg_pooling 时,可以认为丢失了一些信息。所以我们选择先池化再接激励函数。


对于 MAX_pooling,其实先池化再接激励函数,或者先激励函数再接池化是一样的。两个操作是可以交换的。

先 relu 再池化:当经过 relu 函数之后,得到的值为:3,0,1,2,再经过 MAX_poolling 结果为 MAX(3,0,1,2) = 3

先池化在 relu: 经过 MAX_pooling 结果为MAX (3,-2,1,2) = 3, 再经过 relu 函数,最终结果为 relu (3) = 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值