AI Agent爆火!手把手教你用Coze打造自己的“数字员工”(已支持 DeepSeek 最新模型)

2025年每个人都该学会开发AI Agent!

Agent并非聊天机器人的升级版。它不仅会告诉你“如何做”,还会“帮你做”。2025年,AI Agent(智能体)已成为企业降本增效的“数字劳动力”,它们不仅能理解指令,更能像人类一样规划任务、调用工具、记忆交互,完成从“分析竞品报告”到“自动发送邮件”这样的全流程操作。

Agent=大模型+记忆+主动规划+工具使用

DeepSeek引爆技术平权,普通人也能玩转AI

中国大模型DeepSeek-R1的横空出世,以1/70的训练成本、3%的定价颠覆行业,让AI开发从“高门槛”走向“平民化”。这意味着:无需天价算力,用Coze这类低代码平台+开源模型,小白也能快速搭建智能体。

扣子(Coze)是字节跳动推出的Agent开发平台,扣子最初将Agent称为Bot,2024年10月改版后,将其称为智能体。海外版面向海外用户和市场,可调用GPT-4o、GPT-4-Turbo、Gemini等国外大模型,而国内版只能调用国内的大模型,如豆包、Kimi、Baichuan 4、通义千问、GLM-4等。

2025年2月6日,扣子已支持 DeepSeek 最新模型,在扣子,你可以体验到 DeepSeek-R1 及 DeepSeek-V3 等模型。

扣子是一个非常易用、扩展能力强大、生态活跃的Agent开发平台,非常适合零编程基础的人员使用。**《零基础开发AI Agent——手把手教你用扣子做智能体》**一书以扣子国内版为Agent开发平台,全面介绍扣子各项功能的使用技巧、基于扣子开发Agent的案例。

从0开始设计一个Agent

开发Agent的“3-10”实施框架

基于Agent开发实践,我们总结出“3-10”实施框架,如图所示,即通常会按照3个阶段,10个环节开发一个具备生产级应用、商业化能力的Agent。

(1)规划Agent的阶段。 该阶段包括定义Agent的应用场景、梳理业务流程和分析痛点、梳理Agent的功能定位和开发需求3个环节。

(2)设计Agent的阶段。 包括绘制Agent的运行流程图、设置大模型及参数、设计提示词、配置Agent技能、设计用户沟通页面5个环节。

(3)上线Agent的阶段。 包括测试与调优、发布两个环节。

开发Agent的策略

按照以上开发流程,我们可以一步一步地完成Agent的开发。然而,仅仅掌握这些步骤是不够的,要想开发出一个优秀的Agent,还需要秉持良好的Agent开发理念,遵守实施原则。这些理念和原则将指导我们既能够充分发挥Agent的能力,又能够理解现阶段Agent的局限性。

懂场景和业务,比懂AI技术更重要

开发者需要明白,在开发Agent的过程中,懂场景和业务的重要性远远超过懂AI技术。AI技术只有与业务紧密结合,才能真正发挥其作用。

目前,AI应用还处于早期阶段。大多数人认为,自己只是Agent的使用者,而不是参与者,更不会是开发者。但仅靠程序员很难推动Agent的全面繁荣和深入发展。下图所示为AI技术落地应用的3个层次。第一个层次是工作+AI,我们利用大模型进行工作提效、生活问答。第二个层次是业务+AI,AI应用理解业务,基于业务场景给予更专业的回复,成为Agent数字员工。第三个层次是业务×AI,实现了更加系统、全面的AI与业务的结合,让我们的工作从数字化进入智能化。

在这3个层次中,**理解业务、业务能力成为驱动AI技术深化应用的关键因素。**因此,Agent开发者一定要具有业务专家的思维,并提高理解业务能力和设计能力,从应用场景和业务分析视角规划和设计Agent,从而提高Agent解决问题的效果。

使用工具拓展能力,是Agent具有价值的关键

Agent=大模型×(规划+记忆+使用工具+行动)。要想评估一个Agent的功能是否强大,可以看它在这4个方面的配置情况。

举个例子,一个角色聊天类Agent如果没有配置知识库,没有使用插件,也没有工作流、数据库、记忆等,仅仅设计了提示词,那么它的能力和ChatBot不会有很大差别。早期的Agent开发平台提供的简易Agent,差不多就只是个性化的ChatBot,或者只达到了Copilot的水平,从严格意义上来讲不能称其为真正意义上的Agent。

坚持小而美,聚焦特定的应用场景和功能

Agent是针对特定的应用场景的轻应用,可以和RPA结合。Agent可以通过API接入日常软件,也可以和其他Agent协作。因此,Agent开发者应该坚持小而美的理念,从最小颗粒度的应用场景和功能入手,定义Agent的应用场景,设计Agent。应用场景越具体,用户越聚焦,Agent的实现路径就越明确,其落地性就越强、价值就越大。反之,如果我们用开发软件的思维,划定了复杂而广泛的应用场景和功能,那么很可能导致在技术上无法实现Agent,或者其稳定性不佳。

把Agent当成助手,而不是一个完全托管的解决方案

无论是AI技术,还是Agent的发展,都处于探索阶段。我们离AGI还有一段距离。目前,Agent还处于从“好玩”到“有用”的过渡状态。Agent在智能化、自动化、多功能化、性能稳定性等方面都需要提升。因此,作为Agent开发者,我们必须清楚地认识到这一点,对Agent过于理想化的想法,可能会给Agent的开发,或者Agent的应用推广带来困难和风险。

另外,Agent作为AI工具,它的设计初衷是辅助人类,提高效率,而不是取代人类的决策。因此,在使用Agent时,我们应该将其视为一个助手,而不是一个完全托管的解决方案。用户需要对Agent输出的内容进行判断、筛选、加工,而不是盲目地接受和直接使用。


那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值