一文了解八款主流大模型推理框架

生成式 AI 的飞速发展推动了大模型在企业、科研和个人开发中的广泛应用。然而,如何将这些超大模型高效、稳定地推理部署在各类硬件环境上,始终是落地应用的核心难题。无论是面对海量并发请求的企业级部署,还是资源受限环境下的轻量化应用,各类推理平台/引擎都在性能、易用性、硬件依赖和生态支持上各显神通。本文将从技术原理、性能指标、部署方式及适用场景等多个维度,对当前市场上主流的八款大模型推理平台/引擎进行深入解析,并通过直观的对比表格帮助您快速甄选最合适的解决方案。

一、主流推理平台/引擎详解

1、 vLLM —— 高效多 GPU 推理的企业级方案

img

项目地址 :https://github.com/vllm-project/vllm

技术特点

  • PagedAttention 技术:vLLM 利用智能管理 KV 缓存页,结合动态批处理和异步调度机制,有效降低内存占用,同时显著提升推理吞吐量。
  • 多 GPU 分布式部署:支持在多卡 GPU 集群上运行,即便面对千亿参数级模型,也能在低延迟下稳定处理海量并发请求。
  • 量化优化支持:内置 GPTQ、AWQ 等量化技术,有效压缩模型体积,进一步提升 GPU 资源利用率。

优势与局限

  • 优势:适用于高并发在线服务,如金融交易、智能客服和文档处理;低首次响应时间(TTFT)表现出色。
  • 局限:依赖高端 NVIDIA GPU(如 A100、H100,H20),硬件投入成本较高;代码架构较复杂,对定制开发和维护要求较高。

适用场景
适用于对延迟和吞吐量要求极高的企业级应用,特别是需要大规模在线推理服务的场景。

2、 Ollama —— 零门槛、易用的本地推理平台

img

项目地址:https://github.com/ollama/ollama

技术特点

  • 跨平台一键安装:Ollama 支持 Windows、macOS 与 Linux 平台,提供直观的用户界面,降低使用门槛。
  • 内置大模型库:内置超过 1700 款预训练模型,默认提供 int4 量化处理后的权重,大幅降低显存需求,使普通消费级硬件也能流畅运行。
  • 离线推理保障:支持完全离线运行,确保数据安全与隐私,适合对本地数据保护有高要求的应用。
  • 封装 llama.cpp:在 llama.cpp 的基础上提供了更高层次的抽象,使模型调用与管理更加简单便捷。

优势与局限

  • 优势:操作简单、易上手,适合个人开发者、学生和快速原型验证;低硬件资源要求及离线数据安全。
  • 局限:在高并发场景下,响应性能可能存在瓶颈;扩展性和插件定制能力较弱,不适合大规模在线部署。

适用场景
适用于个人原型开发、教育演示、数据隐私要求较高的本地推理场景等轻量级应用。

3、SGLang —— 高吞吐量与极致响应的前沿引擎

img

项目地址:https://github.com/sgl-project/sglang

技术特点

  • RadixAttention 优化:通过共享前缀请求和高效缓存策略,SGLang 能在理论上实现十万级 token/s 的超高吞吐量,同时显著降低响应延迟。
  • 高效结构化输出:内置高性能 JSON 解析模块,便于构建面向结构化数据查询的 API 服务,适合复杂自动化工作流。
  • 轻量模块化架构:采用灵活的模块化设计,便于快速集成新技术(如 FlashInfer 内核),不断优化推理效率。

优势与局限

  • 优势:适用于大批量结构化查询和实时响应要求极高的应用;在高并发场景下表现出色。
  • 局限:当前版本仅支持 Linux 平台,跨平台兼容性待提升;对多模态任务支持较弱,生态尚在起步阶段。

适用场景
适用于金融、医疗、搜索引擎等领域的高并发实时响应场景,特别适合结构化数据处理应用。

4、 LMDeploy —— 国产硬件下的性能优化专家

img

项目地址:https://github.com/InternLM/lmdeploy

技术特点

  • 国产 GPU 深度适配:LMDeploy 针对华为昇腾等国产 GPU 进行专门优化,充分发挥硬件优势,显著提升推理效率与显存利用率。
  • 多模态融合支持:在视觉-语言混合模型上具备明显优势,能同时处理图像和文本数据,满足复杂业务场景需求。

优势与局限

  • 优势:在国产硬件环境下成本优势明显,适合政府、企业级定制化部署;多模态支持能力强。
  • 局限:更新迭代速度较慢;分布式部署和高并发处理能力有待进一步提升。

适用场景
适用于国内企业和政府机构在国产 GPU 平台上的大模型部署,特别是多模态交互和视觉语言任务领域。

5、 Llama.cpp —— 资源受限环境下的轻量级推理解决方案

img

项目地址: https://github.com/ggml-org/llama.cpp

技术特点

  • 纯 CPU 推理:完全基于 CPU 实现,无需高性能 GPU,适合在嵌入式设备、边缘计算及资源受限环境下运行。
  • 轻量级与开源:架构简单、易于部署,社区活跃,用户可以根据需求自行定制和优化推理过程。

优势与局限

  • 优势:零硬件门槛,成本极低;适合边缘设备和低负载任务;开源生态丰富,便于快速迭代。
  • 局限:与 GPU 加速方案相比,推理速度较慢,不适合大规模在线服务;高并发处理能力有限。

适用场景
适用于边缘计算、物联网和低负载场景,为无 GPU 环境下的基本推理需求提供可行方案。

6、 TensorRT-LLM —— 基于 NVIDIA TensorRT 的深度优化引擎

项目地址:https://github.com/NVIDIA/TensorRT-LLM

img

技术特点

  • 深度链路优化:借助 NVIDIA TensorRT,对大模型进行全链路优化,确保在推理过程中极低延迟和超高吞吐量。
  • 量化与预编译支持:通过预编译和多种量化方案(如 FP8/INT4),最大化利用 NVIDIA GPU 的计算潜力,进一步提升性能。

优势与局限

  • 优势:在 NVIDIA GPU 环境下表现出色,极大缩短响应时间,适合对推理速度要求苛刻的生产级应用。
  • 局限:预编译过程可能会带来冷启动延迟;仅限于 NVIDIA CUDA 平台,跨平台部署存在局限。

适用场景
适用于大规模实时响应系统、在线服务和需要极致性能优化的企业级应用。

7、 Hugging Face TGI —— 生产级稳定推理服务平台

img

项目地址:https://github.com/huggingface/text-generation-inference

技术特点

  • 成熟稳定的生态系统:作为 Hugging Face Inference API 的核心组件,TGI 在云端推理服务中已被广泛验证。
  • 标准化 API 接口:提供 RESTful API 与 OpenAI 兼容接口,支持连续批处理和流式输出,便于与现有应用无缝集成。

优势与局限

  • 优势:文档丰富、生态成熟,易于集成和扩展;适合大规模云端部署和 API 推理。
  • 局限:在极端高并发场景下,定制化优化能力可能略逊于专用解决方案;部分高级功能依赖云端服务。

适用场景
适用于企业级云端服务和 API 推理平台,能够提供稳定、可靠的生产级推理支持。

8、 MLC-LLM —— 新兴的 ML 编译器推理引擎

img

项目地址:https://github.com/mlc-ai/mlc-llm

技术特点

  • 基于 Apache TVM 的编译优化:MLC-LLM 利用 ML 编译技术对大模型进行全链路优化,有效降低首次响应时间(TTFT),为快速原型验证提供支持。
  • 实验性与前沿探索:在低并发场景下表现优异,展示了编译优化技术在推理领域的巨大潜力。

优势与局限

  • 优势:在小规模、低延迟需求场景中表现突出,适合研发初期和实验性应用。
  • 局限:当前版本多为 nightly 构建,稳定性和文档支持仍有待完善;部署流程相对复杂,对编译与配置要求较高。

适用场景
适用于研发初期、实验性低延迟场景,未来稳定版本问世后有望在大规模生产部署中发挥更大作用。

二、各平台综合对比表

为了更直观地对比上述八款平台/引擎的技术特点、优势局限和适用场景,整理了以下综合对比表:

平台/引擎核心技术/亮点优势局限适用场景
vLLMPagedAttention、动态批处理、异步调度、多 GPU 分布式高并发、低延迟,适合大规模在线服务依赖高端 GPU、代码复杂,二次开发门槛较高金融、智能客服、文档处理等企业级应用
Ollama基于 llama.cpp 封装,跨平台支持、内置 1700+ 模型、int4 量化安装便捷、易上手、低硬件要求、数据离线保障并发处理能力较弱,扩展性和插件定制能力有限个人原型开发、教育展示、本地隐私要求场景
SGLangRadixAttention、高效缓存、结构化输出、轻量模块化架构超高吞吐量、极低响应延迟、适合高并发结构化查询目前仅支持 Linux、对多模态任务支持能力有限金融、医疗、搜索引擎等高并发实时响应场景
LMDeploy国产 GPU 深度适配、显存优化、多模态融合支持在国产硬件上性能优异、成本优势明显,适合多模态复杂场景更新迭代较慢、分布式部署和高并发处理能力待加强国内企业、政府机构部署,视觉语言混合任务
Llama.cpp纯 CPU 推理、轻量级设计、开源社区支持零硬件门槛、低成本、适合边缘和嵌入式设备推理速度较慢,高并发能力有限边缘计算、物联网、低负载场景
TensorRT-LLM基于 NVIDIA TensorRT 的深度优化、量化与预编译支持极低延迟、高吞吐量、充分发挥 NVIDIA GPU 优势预编译过程可能带来冷启动延迟,仅限 NVIDIA CUDA 平台企业级大规模在线服务、实时响应系统
Hugging Face TGI生产级推理服务、标准化 RESTful API、OpenAI 兼容接口生态成熟、稳定可靠、易于云端集成高并发定制化优化能力稍弱,部分功能依赖云端服务云端部署、API 推理、企业级生产环境
MLC-LLM基于 Apache TVM 的编译优化、低 TTFT、实验性原型验证在低并发、低延迟场景下表现突出,展示编译优化潜力当前版本稳定性待提高,部署流程较复杂研发初期、实验性应用,未来大规模部署探索

三、综合选择建议与未来展望

综合建议

  • 企业级高并发应用:对于在线客服、金融交易和智能文档处理等对延迟与吞吐量要求极高的场景,推荐选择 vLLM、TensorRT-LLM 或 Hugging Face TGI,它们在多 GPU 部署和低延迟响应方面表现尤为突出。
  • 个人开发与本地原型:Ollama 凭借其跨平台、易上手的特性,非常适合个人原型验证和离线本地部署,而 Llama.cpp 则满足了无 GPU 环境下的基本推理需求。
  • 国产硬件部署:LMDeploy 针对国产 GPU 进行了深度优化,具备多模态处理优势,适合国内企业和政府机构在特定硬件环境下部署。
  • 新兴技术探索:SGLang 与 MLC-LLM 分别在高吞吐量和编译优化上展示了前沿技术潜力,虽然当前还存在一定局限,但未来发展前景值得期待。

未来展望
随着硬件升级、算法革新和产业生态不断完善,大模型推理技术正朝着以下方向发展:

  • 跨平台与异构计算:未来推理引擎将支持 CPU、GPU 及专用 AI 芯片的无缝切换,构建更加灵活的部署体系。
  • 模块化与智能调度:通过模块化设计和智能调度,用户可根据业务需求自定义优化策略,实现更高效的资源利用。
  • 多模态与融合能力:在视觉、语音、文本等多模态数据处理方面,推理平台将不断完善跨模态融合技术,提供全方位智能服务。
  • 开源生态与产业协作:开源社区的活跃和产业界的深度合作,将推动标准化接口、数据安全和高效部署方面的持续优化,为 AI 应用提供坚实技术支撑。

四、结语

当前大模型推理平台/引擎生态各具特色,从企业级高并发服务到本地轻量化部署,从国产硬件优化到前沿编译技术探索,每种方案都有其独到优势。选择合适的推理方案不仅需考虑技术指标,更要结合业务场景、硬件资源与未来扩展规划。未来,随着技术的不断进步和产业协作的加深,大模型推理生态将呈现出更加多元、灵活和高效的局面,为各领域在激烈竞争中抢占先机提供强大支撑。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### OM模型的训练方法概述 OM(Offline Model)模型并非一种可以直接被训练的模型,而是由其他框架中的预训练模型转换而来的推理优化模型。具体来说,OM模型是由昇腾AI处理器支持的一种专用格式,主要用于加速推理阶段的表现[^2]。 如果希望获得一个可用的OM模型,通常需要完成以下几个方面的操作: #### 1. 使用现有框架进行模型训练 在实际应用中,OM模型本身并不提供直接的训练功能。相反,开发者需先利用主流深度学习框架(如PyTorch、TensorFlow等)来训练所需的神经网络模型,并保存为相应的权重文件(例如`.pt`或`.pb`文件)。这些框架提供了丰富的工具和资源用于构建、调整和验证模型性能[^1]。 对于YOLOv5这样的目标检测算法而言,《训练自己的yolov5模型》一文中提到的方法可以帮助生成初始的最佳权重量化版本——即`best.pt`文件。 #### 2. 将训练好的模型导出至中间表示形式(ONNX) 为了兼容不同硬件平台上的部署需求,在完成初步训练之后,往往还需要把原生框架下的模型转化为更通用的标准格式—比如ONNX (Open Neural Network Exchange)[^1]。通过运行项目内的`export.py`脚本即可实现这一过程: ```python import torch from models.experimental import attempt_load weights = 'best.pt' device = torch.device('cpu') model = attempt_load(weights, map_location=device) dummy_input = torch.zeros((1, 3, 640, 640)) torch.onnx.export( model, dummy_input, "best.onnx", opset_version=11, do_constant_folding=True, input_names=['images'], output_names=['output'] ) ``` 上述代码片段展示了如何基于加载后的`best.pt`创建对应的`best.onnx`文件。 #### 3. 转换为OM模型并配置环境变量 一旦拥有了标准的ONNX描述文档,则可进一步借助ATC(Auto-Tuning ToolChain)命令行工具将其编译成最终适配于特定Ascend系列芯片架构的目标二进制程序包(.om),从而充分发挥底层计算单元的优势特性: ```bash atc --model=./best.onnx \ --framework=5 \ --output=data/models/yolov3/best_yolo \ --soc_version=Ascend910B2 \ --input_shape="images:1,3,640,640" ``` 这里需要注意的是,除了指定必要的输入参数外,还需明确告知所针对的具体SOC版本号以及期望设定的数据形状大小等内容项。 另外值得注意的一点在于,当涉及到具体的业务场景定制化开发时,可能还会遇到一些额外的要求或者约束条件。此时则可以通过适当修改配套的应用层逻辑源码加以解决。例如参照给出的例子更新路径定义部分的信息字段值以便匹配新的物理设备规格特征等等[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值