无干扰环境下的搜索雷达的距离方程为:
式中,是目标雷达截面积;
是搜索给定立体角
所需时间;SNR是给定检测概率(一般为90%)的峰值信噪比;
是玻耳兹曼常数;
是系统噪声温度;
是发射损耗因子;
是接收损耗因子;
是大气往返传输损耗因子;
是平均发射功率;
是接收孔径。可以看出,当方括号内所有量固定时,最大探测距离的四次方与功率口径积成正比,在一阶近似时,
与发射频率无关(实际上,
,
,
,
和
都是发射频率的函数)。
假设距雷达处有一阻塞式干扰机,雷达输入端噪声功率密度为:
式中,是干扰机在带宽
内的辐射功率谱密度;
是路径长度
上的大气传输损耗(单程);
是干扰机方向雷达接收天线相对的副瓣增益。
假设平均噪声功率密度由阻塞噪声功率密度决定,则第一个式子变为:
于是,当第一个括号中的雷达参数及第二个括号中的威胁参数给定时,雷达的测距性能仅由平均发射功率与副瓣电平之比决定。上式是远程支援干扰(SOJ)雷达方程。如果令探测距离和相等,且有
,则方程也可用于自卫式干扰(SSJ)。
对于跟踪雷达,参数估计的精度由下式决定:
式中,是常数;
代表感兴趣参数的分辨单元(仰角、方位角、距离距离变化率);
是误差方差。干净环境中的雷达方程式可重写为
式中,是照射时间,表示为:
是以立体角表示的天线波束宽度,即
式中,是雷达天线增益。在给定精度分量要求的条件下,它是建立在武器系统各种考虑(例如,导弹发射精度要求)之上的。故最大跟踪距离正比于功率、孔径和增益三者乘积的1/4次方根。
在以干扰为主的噪声环境中,雷达距离方程是为
可以看出,在干扰环境中,雷达探测距离与副瓣电平密切相关。和搜索雷达一样,跟踪雷达中的孔径(无干扰环境)用
(存在SOJ)来代替。
下面讨论雷达在箔条干扰环境中的性能。装有MTI 设备的搜索雷达在箔条干扰中的距离方程为:
式中,是箔条后向散射系数(单位为
);
和
分别代表方位和仰角方向上的波束宽度;r是距离单元大小;
是目标回波功率与检测的箔条单元回波功率之比;
是总处理损耗;
是MTI改善因子;
是常量。
与照射时间
有关,严格的关系取决于MTI的类型,并与箔条多普勒频谱的各种假设有关。若假设雷达采用
个并行接收通道的多波束接收天线,则在搜索模式下,平均照射时间由式
得出:
将实际值代入式后,可以看出为得到较好的探测性能,MTI必须有实质性的提高。这意味着必须有足够的照射时间以便提供大量脉冲进行相参处理,如果波束较窄,那么,必须使用多个并行的接收通道。如果箔条限制在一个有限的区域内,可以采用自适应雷达来对付。此时用牺牲覆盖范围的办法给箔条以额外的照射时间。
可以利用以上公式进行分析设计。有了目标、干扰机和雷达的参数后,可以估算最大探测距离值。设计时主要是选择雷达参数(即发射机功率、天线孔径、副瓣电平、发射机频率),尽可能增大雷达在干扰中的探测距离。这些方程还可以用来比较不同系统的性能。儿种ECCM策略的效果(如SLC)亦可加以考虑。