半导体二极管
常见结构
与PN结对比
- 存在体电阻,电流比PN结电流小
- 反向电流大一些(封装外壳存在漏电)
伏安特性
温度对其影响
- 温度上升,正向导通伏安曲线左移,反向饱和电流下移。
- 室温下,每升高1℃,正向电压下降2-2.5mV;每升高10℃,反向饱和电流增大一倍。
二极管的主要参数
- 门坎电压(死区电压):Vth,正向导通时,类似一个和大电阻,好像有个门坎。硅管Vth约为0.5V,锗管Vth约为0.1V。由于二极管导通后,曲线较垂直陡峭,通常认为,硅管正向导通压降约为0.7V,锗管约为0.2V。
- 最大整流电流:IF,二极管正向通过电流平均值的最大值–工作时能承受的功率最大值对应的电流。
- 反向击穿电压:VBR,管子反向击穿时的电压值,一般手册上给出的最高反向工作电压约为击穿电压的50%:
- 反向电流:IR, 指管子未击穿时的反向电流,其值越小,管子的单向导电性越好。
- 极间电容:Cd,PN结存在扩散电容CD和势垒电容CB,极间电容就是反映二极管中PN结电容效应的参数,Cd= CD+CB。
- 最高工作频率(上限频率):fM:由于PN结上面的极间电容,如果工作频率大,电容近似短路,破坏单向导电性。在高频电路中要注意这个。
- 反向恢复时间:TRR:当二极管外加电压极性翻转时,其原工作状态不能在瞬间完全随之变化。特别是外加电压从正向偏置变成反向偏置时,二极管中电流由正向变为反向,但其翻转后瞬间有较大的反向电流,经过一定的时间后反向电流才会变得很小。如下图:二极管由正向导通到反向截止时电流的变化。
存在反向恢复时间是因为扩散电容的影响,扩散电容越小,反向恢复时间越短,工作频率越高。
二极管等效电路模型
-
理想模型
-
恒压降模型与折线模型
-
小信号模型(小信号分析法)
-
当输入信号是一个小信号的时候,远没有达到二极管的导通压降,仅仅只有小信号的激励无法穿过二极管,这时就可以加入一个直流电压源,使得二极管工作在合适的静态工作点(Q),从而将小信号传输过来(此处的思想模型对三极管的工作原理有很大的启发)。当vs=Vmsin(wt)时(Vm<<VDD),电路的负载线为: i D = − 1 R v D + 1 R ( V D D + v s ) i_D=-\frac{1}{R}v_{D}+\frac{1}{R}(V_{DD}+v_{s}) iD=−R1vD+R1(VDD+vs)
-
把二极管的伏安曲线以Q点为切点的一条直线,如下图,其斜率的倒数就是小信号模型的微变电阻rd,其模型如下:
-
微变电阻: r d = Δ v D / Δ i D r_{d} =\Delta v_{D}/\Delta i_{D} rd=ΔvD/ΔiD
-
二极管的指数模型: i D = I s ( e v V T − 1 ) i_{D}=I_{s}(e^{\frac{v}{V_{T}}}-1) iD=Is(eVTv−1)
-
微变电导: g d = 1 r d = d i D d v D = d [ I s ( e v D / V T − 1 ) ] d v D = I s V T e v D / V T g_{d}=\frac{1}{r_{d}}=\frac{di_{D}}{dv_{D}}=\frac{\mathrm{d} [I_{s}(e^{v_{D}/{V_{T}}}-1)]}{\mathrm{d} v_{D}}=\frac{I_{s}}{V_{T}}e^{v_{D}/{V_{T}}} gd=rd1=dvDdiD=dvDd[Is(evD/VT−1)]=VTIsevD/VT
-
在Q点处: v D > > V T = 26 m V , i D ≈ I s e v D / V T v_{D}>>V_{T}=26mV,i_{D}\approx I_{s}e^{v_{D}/V_{T}} vD>>VT=26mV,iD≈IsevD/VT
-
原式等于: g d = I s V T e v D / V T ≈ I D V T g_{d}=\frac{I_{s}}{V_{T}}e^{v_{D}/{V_{T}}}\approx \frac{I_{D}}{V_{T}} gd=VTIsevD/VT≈VTID
-
由此可得: r d = 1 g d = V T I D = 26 ( m V ) I D ( m A ) , ( 常 温 下 , T = 300 K ) r_{d}=\frac{1}{g_{d}}=\frac{V_{T}}{I_{D}}=\frac{26(mV)}{I_{D}{(mA)}},(常温下,T=300K) rd=gd1=IDVT=ID(mA)26(mV),(常温下,T=300K)
-
如上图3.4.5,对整个电路进行分析:总电流=直流+交流
- 直流部分: I D = V D D − v D R I_{D}=\frac{V_{DD}-v_{D}}{R} ID=RVDD−vD
- 交流部分: i d = U s r d + R i_{d}=\frac{U_{s}}{r_{d}+R} id=rd+RUs
- 总电流: i D = i d + I D i_{D} = i_{d}+I_{D} iD=id+ID
- 高频电路模型:
-
二极管的基本电路及分析
- 整流电路:所谓整流通常是指双极性电压(或电流)变为单极性电压(或电流)处理过程。如下图:半波整流电路。
- **
**:在电子电路中,常用限幅电路对各种信号进行处理。它用来让信号在预置的电平范围内有选择地传输一部分。限幅电路有时也称为削波电路。利用二极管的正向导通曲线(利用正向导通的稳压作用)。 - 钳位电路:可以在完整信号波形中叠加一个直流电平,通常要配合电容器使用。设二极管导通压降VD=0.7V,vs=Vmsinwt V,且Vm>>VD,稳态出vo的波形如下图:
只有在vs的负半周,D才有可能导通,此时电容器充电,充电的最高电压为VC=Vm-VD=Vm-0.7 V。由于D导通时,整个回路的电阻非常小,所以电容器C上的电压可以快速充至最大值。但是电容C并无放电回路,所以充电完毕后,C上的电压VC始终保持不变,此后电路进入稳态。这时输出电压为 v o = v s + V c = v s + V m − 0.7 ( V ) v_{o}=v_{s}+V_{c}=v_{s}+V_{m}-0.7 (V) vo=vs+Vc=vs+Vm−0.7(V) 若二极管方向颠倒,输出波形相当于输入波形的顶部钳位在+0.7V的直流电平上。所以,钳位电路的作用可以看作是将周期性变化的波形的顶部/底部保持在某一确定的直流电平上。 - 开关电路:利用二极管的单向导电性可以接通或断开电路。数字电路广泛应用。
- 分析过程:
- 假设二极管处于截止状态(理想模型vD<0;恒压降模型vD<VD,均有iD=0),二极管相当于开路;
- 求出vD的值;
- 若vD<=0, 则说明假设成立,二极管实际处于截止状态,所得结果即为所求,若vD>0,则表明假设错误,二极管实际处于导通状态,再根据导通状态重新求解电路。
先假设两二极管均截止(断开),4.7kΩ电阻中无电流流过,两二极管阳极电位为5 V。当v11=0 V、v12=5 V,得vD1=5 V > 0,vD2=0,表明D1的假设错误,实际上是正向偏置,所以D1导通;D2的偏置电压为0 V,假设成立,即D2截止。D1导通时,vo=0V,此时D2的阴极电位为5V,阳极为0V,仍为截止状态。分析结果如下:
只要有一个为0V,则输出为0V;只有当两个输入电压为5V,输出才为5V,与逻辑。
- 分析过程:
- 小信号:微变电阻rd是与静态工作点Q有关的,这个分析方法类似叠加原理。即先分析直流通路,再分析交流通路,最有叠加。要注意的是:分析静态与动态的二极管的模型不同。
- 分析方法:
- 1.分析电路的静态工作点,求得静态工作点Q;
- 2.根据静态工作点Q算出微变电阻rd;
- 3.根据小信号模型的交流等效电路,求出小信号作用下电路的交流电压、电流;
- 4.与静态值叠加, 得到电路响应的总量结果。
- 如下图:VDD=5V,R=5kΩ,恒压降模型的VD=0.7V,信号源vs=0.1sinwt。
- 将两个电压源VDD与vs分开考虑,得到相应的等效电路
- 静态工作点: V D = 0.7 V V_{D}=0.7V VD=0.7V I D = ( V D D − V D ) / R = ( 5 − 0.7 ) V / 5 k Ω = 0.86 m A I_{D}=(V_{DD}-V_{D})/R=(5-0.7)V/5kΩ=0.86 mA ID=(VDD−VD)/R=(5−0.7)V/5kΩ=0.86mA输出电压的直流分量为: V o = I D R = 0.86 m A ∗ 5 k Ω = 4.3 V V_{o}=I_{D}R=0.86mA*5kΩ=4.3V Vo=IDR=0.86mA∗5kΩ=4.3V
- 此静态工作点下的微变电阻: r d = V T I D = 26 m V 0.86 m A ≈ 30 Ω = 0.03 k Ω r_{d}=\frac{V_{T}}{I_{D}}=\frac{26mV}{0.86mA}\approx30Ω=0.03kΩ rd=IDVT=0.86mA26mV≈30Ω=0.03kΩ
- 输出电压交流分量: v o = R r d + R ∗ v s = 5 k Ω 5 k Ω + 0.03 k Ω ∗ 0.1 s i n w t ≈ 0.0994 s i n w t ( V ) v_{o}=\frac{R}{r_{d}+R}*v_{s}=\frac{5kΩ}{5kΩ+0.03kΩ} *0.1sinwt\approx0.0994sinwt(V) vo=rd+RR∗vs=5kΩ+0.03kΩ5kΩ∗0.1sinwt≈0.0994sinwt(V)
- 输出电压总量: v O = V o + v o = ( 4.3 + 0.0994 s i n w t ) V v_{O}=V_{o}+v_{o}=(4.3+0.0994sinwt)V vO=Vo+vo=(4.3+0.0994sinwt)V
- 分析方法:
- 低电压稳压电路:利用二极管的正向导通特性,可以获得一种稳压性能较好的低电压稳压电路。二极管小信号模型可以用于此种电路稳压特性的分析。