目录
导读
当机器学习模型从实验室走向生产环境,开发者需要跨越“最后一公里”的鸿沟。本文将以房价预测场景为例,手把手带你完成模型部署、监控与维护全流程,覆盖代码实战、架构设计与避坑指南。文末附思维导图,助你快速掌握核心要点!
一、模型部署:让代码走出实验室
1. 模型打包:保存完整流水线
问题:生产环境需要同时处理特征工程和预测,但多数人只保存了模型!
解决方案:用Pipeline
封装预处理+模型,用joblib
序列化。
from sklearn.pipeline import Pipeline
from sklearn.externals import joblib
# 假设preprocessor是预处理步骤,model是训练好的模型
pipeline = Pipeline([
('preprocessor', preprocessor),
('model', model)
])
# 保存完整流水线
joblib.dump(pipeline, 'house_price_model.joblib')
2. 部署方式选择:嵌入式 vs 服务化
部署方式 | 适用场景 | 优点 | 缺点 |
---|---|---|---|
嵌入式 | 小型应用、边缘设备 | 低延迟,无需网络 | 升级困难,扩展性差 |
Web服务化 | 中大型系统,多语言环境 | 易扩展,支持热更新 | 需要维护服务 |
3. 实战:用Flask搭建REST API
from flask import Flask, request, jsonify
import joblib
app = Flask(__name__)
model = joblib.load('house_price_model.joblib')
@app.route('/predict', methods=['POST'])
def predict():
data = request.json
features = preprocess_input(data) # 自定义输入处理
prediction = model.predict([fe