单细胞转录组(scRNA-seq)与空间转录组(ST)的区别

单细胞转录组测序(Single-cell RNA sequencing, scRNA-seq)和空间转录组测序(Spatial Transcriptomics, ST)都是解析基因表达的重要技术,但它们在技术原理、分辨率、数据特性、应用场景等方面存在明显区别。

图片

下面从多个维度详细对比这两种技术。


1. 技术原理

🔹 单细胞转录组(scRNA-seq)

  • 核心原理

    :将细胞分离成单个细胞,通过高通量测序技术检测每个细胞的mRNA表达情况。

  • 关键步骤

    1. 组织解离

      :使用酶或机械方法分离单个细胞。

    2. 细胞捕获

      :利用微流控芯片(如 10x Genomics)、微滴(Drop-seq)、微孔(SMART-seq)等技术对单个细胞进行分离。

    3. mRNA 提取与扩增

      :使用逆转录和PCR技术扩增RNA。

    4. 文库构建 & 高通量测序

      :将cDNA文库进行Illumina测序。

    5. 数据分析

      :利用降维(PCA/t-SNE/UMAP)、聚类、细胞类型注释等方法解析细胞异质性。


🔹 空间转录组(ST)

  • 核心原理

    :在组织切片上原位捕获 mRNA,并保留空间信息,通过测序或荧光成像解析基因表达模式。

  • 关键步骤

    • 条形码探针法(Visium, Slide-seq)

      :玻片上布满条形码探针,mRNA 与其结合,并进行测序。

    • 原位测序法(MERFISH, seqFISH)

      :荧光标记RNA分子,通过显微成像获取表达数据。

    1. 组织切片

      :组织样本固定后切片,铺在玻片或特殊基质上。

    2. mRNA 捕获

    3. 基因表达检测

      :进行高通量测序或荧光成像。

    4. 数据分析

      :空间基因表达重建、区域聚类、细胞类型鉴定、空间相互作用分析等。


2. 分辨率对比

维度单细胞转录组(scRNA-seq)空间转录组(ST)
单细胞分辨率

✅ 能达到单细胞或亚细胞水平

❌ 传统ST技术难以达到单细胞(除MERFISH、seqFISH等)

空间信息

❌ 丢失空间位置信息

✅ 可解析基因的空间分布

细胞类型解析

✅ 能精准区分细胞类型

⚠ 依赖组织区域划分,难以直接分离单个细胞

🔹 单细胞转录组

  • 优势

    :可检测单个细胞基因表达,适用于研究细胞异质性、稀有细胞类型、细胞命运轨迹等。

  • 劣势

    :缺乏组织空间信息,细胞分离过程可能影响细胞状态。

🔹 空间转录组

  • 优势

    :保留细胞在组织中的空间信息,适用于研究组织结构、细胞间相互作用、发育过程等。

  • 劣势

    :通常无法达到单细胞分辨率,部分技术(如Visium)每个spot可能包含多个细胞。


3. 数据特性

维度单细胞转录组(scRNA-seq)空间转录组(ST)
数据类型

单细胞表达矩阵

空间表达矩阵

分辨率

单细胞级

细胞簇(spot)或高分辨率(MERFISH)

基因覆盖度

依赖文库策略(10x 低覆盖,SMART-seq 高覆盖)

受捕获探针或测序深度限制

噪声水平

高(掉落事件、多重检测)

低(组织切片减少细胞丢失)

样本通量

一次可检测数万细胞

受玻片面积、探针数量限制

单细胞数据:更关注细胞异质性,适合细胞亚群分析。
空间数据:强调基因表达的空间模式,适合研究组织微环境。


4. 主要技术平台对比

技术单细胞转录组空间转录组
10x Genomics

Chromium (scRNA-seq)

Visium

Smart-seq

高精度 scRNA-seq

❌(无空间分辨率)

Drop-seq

微滴式单细胞测序

Slide-seq

高分辨率 ST

MERFISH

原位测序 ST

seqFISH+

超高分辨率 ST

Stereo-seq

超高分辨率 ST


5. 适用研究方向

研究领域单细胞转录组(scRNA-seq)空间转录组(ST)
细胞类型鉴定

✅ 解析异质性

⚠ 依赖区域划分

肿瘤微环境

✅ 识别肿瘤亚群

✅ 研究细胞空间分布

胚胎发育

✅ 研究细胞分化

✅ 研究组织结构变化

神经科学

✅ 解析神经元亚群

✅ 研究脑区分布

免疫学

✅ 解析免疫细胞谱系

✅ 研究免疫细胞浸润

组织病理学

❌ 丢失空间信息

✅ 结合病理切片


6. 单细胞转录组 & 空间转录组的整合分析

为了同时利用 scRNA-seq 的细胞精度 和 ST 的空间信息,可以进行数据整合:

  1. 使用 scRNA-seq 识别细胞类型

  2. 将单细胞数据映射到空间数据

    ,推测不同细胞在组织中的分布。

  3. 分析空间基因表达模式

    ,研究细胞间相互作用。

常用整合工具:

  • Seurat

    (单细胞 + 空间数据映射)

  • SPOTlight

    (基于 NMF 解析空间细胞组成)

  • Cell2location

    (贝叶斯模型推测细胞分布)

  • Tangram

    (机器学习模型进行单细胞-空间映射)


7. 总结

对比维度单细胞转录组(scRNA-seq)空间转录组(ST)
分辨率

单细胞级

细胞簇(spot)或超高分辨率

空间信息

❌ 无

✅ 有

细胞异质性

✅ 精确识别

⚠ 依赖区域划分

数据降噪

⚠ 需要更强滤噪

✅ 噪声相对低

适用场景

研究细胞类型、发育、癌症

研究组织结构、细胞间通讯

最佳实践

  • 想研究细胞类型?

     用 scRNA-seq

  • 想研究组织结构?

     用 ST

  • 想结合两者?

     用 scRNA + ST 整合分析

未来,单细胞 & 空间转录组的结合 将成为趋势,推动更深入的生物学研究! 🚀

生信大白记第57记,就到这里,关注我!

下一记,持续更新学习生物信息学的内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值