靶向测序分析

靶向测序(Targeted Sequencing)

靶向测序是一种聚焦于基因组中特定区域的高通量测序技术。相比全基因组测序(WGS),靶向测序数据量更小,但灵敏度更高,适合深入研究特定区域的遗传变异。

图片


1. 技术原理

靶向测序通过选择感兴趣的基因或区域,富集目标片段后进行高通量测序。主要包括以下步骤:

  1. 目标区域选择

    :根据实验需求,选择特定的基因组区域(如癌症相关基因或已知疾病易感区域)。

  2. 目标区域富集

    :通过特定技术(如探针捕获或PCR扩增)富集目标片段。

  3. 高通量测序

    :对富集的片段进行测序。

  4. 数据分析

    :检测目标区域的突变(如SNP、插入缺失、拷贝数变异等)。


2. 富集技术

靶向测序的核心是目标区域的富集方法,主要包括以下两种:

  1. 探针捕获法(Hybridization Capture)

    • 使用标记的寡核苷酸探针与目标区域互补结合,再通过磁珠或其他手段进行捕获。

    • 适合大范围目标区域的捕获,灵活性强。

    • 应用场景:癌症基因组研究、外显子组捕获。

  2. 多重PCR扩增法(Multiplex PCR)

    • 使用多对特异性引物对目标区域进行扩增。

    • 速度快、成本低,但不适合捕获非常大的区域。

    • 应用场景:特定基因的变异验证、遗传病检测。


3. 优势与局限
优势
  1. 高灵敏度

    :适合检测低频变异,尤其是在肿瘤样本中。

  2. 低成本

    :与WGS相比,靶向测序的数据量更小,成本显著降低。

  3. 专注性强

    :聚焦于特定基因或区域,简化了后续数据分析。

  4. 灵活性高

    :可以根据研究目标定制捕获区域。

局限性
  1. 覆盖范围有限

    :仅检测预定义区域,无法发现目标区域外的变异。

  2. 偏倚风险

    :捕获效率可能不均匀,导致某些区域覆盖不足。

  3. 变异发现有限

    :对于未知或远离捕获区域的变异难以检测。


4. 应用场景

靶向测序广泛用于临床和科研领域,尤其是在需要高效解析特定基因变异的情况下:

  1. 遗传病研究

    • 筛查与遗传病相关的候选基因。

    • 快速检测已知疾病相关突变(如囊性纤维化、地中海贫血等)。

  2. 癌症基因组学

    • 分析癌症样本中常见的致癌基因(如TP53、KRAS)。

    • 追踪肿瘤进化、监测残余病变和复发。

  3. 药物基因组学

    • 检测与药物反应相关的基因(如CYP450家族)。

    • 优化个性化治疗方案。

  4. 微生物与病原体检测

    • 靶向检测抗生素耐药基因或病毒基因组(如HIV、COVID-19变种)。

    • 分析病原体间的遗传变异。


5. 常用平台和技术

靶向测序技术通常基于以下测序平台:

  • Illumina

    :短读长测序,适合小变异的高精度检测。

  • Ion Torrent

    :适合快速检测特定区域变异。

  • PacBio/Oxford Nanopore

    :长读长测序,解析复杂区域(如重复序列、结构变异)。


6. 发展趋势
  • 低成本与高效率

    :新技术不断优化探针设计和捕获效率。

  • 联合多组学分析

    :结合表观组学、转录组学以获得更全面的生物学信息。

  • 实时测序与便携设备

    :例如,Nanopore技术实现快速、现场测序。

靶向测序是一种高效、灵活的工具,在基因组医学和基础研究中具有不可替代的作用。

靶向测序的分析流程包括数据预处理、变异检测、注释及后续分析,每一步都需要严格按照实验和生物信息学标准进行操作。以下是靶向测序的分析流程:


1. 数据预处理

1.1 数据质控(Quality Control, QC)
  • 目标

    :评估和过滤低质量数据,确保下游分析的准确性。

  • 步骤
    • 软件:TrimmomaticCutadapt

    • FastQC

      :生成测序质量报告。

    • MultiQC

      :整合多个样本的质控报告。

    1. 检查测序质量(如碱基质量分布、接头污染)。

    2. 软件工具:

    3. 根据质控结果进行过滤和去接头:


1.2 比对(Alignment)
  • 目标

    :将测序读段(reads)比对到参考基因组。

  • 步骤
    1. 选择参考基因组(如人类基因组GRCh38)。

    2. 比对工具:BWA(常用于短读长数据)、Bowtie2

    3. 输出文件:生成比对结果文件(BAM格式)。

    4. 过滤:去除低质量比对和多重比对reads。


1.3 比对结果处理
  • 目标

    :优化比对结果,提高变异检测的精度。

  • 步骤
    • 工具:IGV(Integrative Genomics Viewer),查看覆盖度和比对质量。

    • 工具:GATK

    • 作用:提高变异检测的准确性。

    • 工具:Picard

    • 作用:标记因PCR扩增产生的重复reads,避免误判变异。

    1. 标记重复序列

    2. 校正碱基质量(Base Quality Score Recalibration, BQSR)

    3. 可视化比对结果


2. 变异检测(Variant Calling)

2.1 突变检测
  • 目标

    :识别单核苷酸变异(SNP)、插入和缺失(Indel)。

  • 工具
    1. GATK HaplotypeCaller

      :高精度检测单体型变异。

    2. FreeBayes

      :适合多样本联合变异检测。

    3. VarScan2

      :灵敏度高,适合检测低频突变。

2.2 结构变异(Structural Variants, SV)检测
  • 目标

    :检测较大的变异(如拷贝数变异、倒位、融合)。

  • 工具
    • Manta

      :检测复杂结构变异。

    • CNVkit

      :专注拷贝数变异分析。

2.3 突变过滤
  • 目标

    :去除假阳性,获得高可信度突变。

  • 方法
    • 设置最小覆盖度和突变频率阈值。

    • 交叉参考公共数据库(如1000 Genomes、gnomAD)。


3. 突变注释(Variant Annotation)

3.1 基因功能注释
  • 目标

    :将突变与已知基因功能、疾病关联信息联系起来。

  • 工具
    1. ANNOVAR

      :全面注释突变的功能影响。

    2. SnpEff

      :快速注释SNP和Indel。

3.2 数据库参考
  • 数据库
    • ClinVar

      :疾病相关变异数据库。

    • COSMIC

      :癌症突变数据库。

    • dbSNP

      :已知单核苷酸变异库。

3.3 优先级排序
  • 目标

    :根据变异的可能致病性对结果排序。

  • 评分工具
    • CADD

      (预测变异功能的评分)。

    • PolyPhen-2

      SIFT(蛋白功能预测)。


4. 下游分析

4.1 临床相关性分析
  • 目标

    :评估突变的致病性和临床意义。

  • 应用

    :诊断遗传病、确定癌症驱动基因突变。

4.2 突变频率分析
  • 目标

    :研究群体中突变的分布和进化关系。

  • 工具

    vcftoolsPlink

4.3 可视化
  • 目标

    :展示分析结果,便于解释和报告。

  • 工具
    • Circos

      :环形基因组变异展示。

    • maftools

      :肿瘤突变谱展示。


5. 报告生成

  • 目标

    :将分析结果转化为用户友好的报告。

  • 内容
    • 样本质量评估。

    • 目标区域覆盖度和均一性。

    • 突变列表及其注释。

    • 临床相关结论(如高危突变)。


6. 常见问题与解决方法

  1. 目标区域覆盖不足

    :优化探针设计或增加测序深度。

  2. 高背景噪音

    :严格设置过滤参数,去除假阳性。

  3. 数据处理耗时长

    :使用高性能计算或并行化工具。


这一流程灵活性较高,可根据研究目标(如癌症基因组分析或遗传病筛查)调整细节步骤。

以下是一个完整的靶向测序分析流程的代码框架,使用常用的生物信息学工具(如FastQCBWAGATKVCFtools等)。这些代码适用于一个标准的靶向测序分析流程,包括从原始数据的质控到变异注释。可以根据具体需求和计算环境调整。


1. 环境准备

确保安装以下工具并设置好环境路径:

  • FastQC

  • MultiQC

  • Trimmomatic

  • BWA

  • Samtools

  • GATK

  • VCFtools

  • ANNOVAR

2. 运行脚本化

将流程整合为一个Bash脚本:

#!/bin/bash# 靶向测序分析流程# 1. 数据质控fastqc raw_data/*.fastq.gz -o QC_results/multiqc QC_results -o QC_results/trimmomatic PE raw_data/sample_R1.fastq.gz raw_data/sample_R2.fastq.gz \    trimmed_reads/sample_R1_paired.fastq.gz trimmed_reads/sample_R1_unpaired.fastq.gz \    trimmed_reads/sample_R2_paired.fastq.gz trimmed_reads/sample_R2_unpaired.fastq.gz \    ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:4:20 MINLEN:50
# 2. 比对bwa mem -t 8 -M reference/genome.fa \    trimmed_reads/sample_R1_paired.fastq.gz \    trimmed_reads/sample_R2_paired.fastq.gz > aligned_reads/sample.samsamtools view -bS aligned_reads/sample.sam | samtools sort -o aligned_reads/sample.sorted.bamgatk MarkDuplicates -I aligned_reads/sample.sorted.bam -O aligned_reads/sample.sorted.markdup.bam \    -M aligned_reads/sample.markdup_metrics.txtsamtools index aligned_reads/sample.sorted.markdup.bam
# 3. 变异检测gatk HaplotypeCaller -R reference/genome.fa -I aligned_reads/sample.recal.bam \    -O variants/sample.raw.vcfgatk VariantFiltration -R reference/genome.fa -V variants/sample.raw.vcf \    --filter-expression "QUAL < 30.0 || DP < 10" --filter-name "LowQual" \    -O variants/sample.filtered.vcfbcftools view -f PASS variants/sample.filtered.vcf > variants/sample.passed.vcf
# 4. 注释convert2annovar.pl -format vcf4 variants/sample.passed.vcf > annotation/sample.avinputtable_annovar.pl annotation/sample.avinput humandb/ \    -buildver hg38 -out annotation/sample -remove \    -protocol refGene,clinvar_20230101,cosmic70 -operation g,f,f -nastring . -polish
# 5. 报告multiqc QC_results/ -o final_report/cp variants/sample.passed.vcf final_report/cp annotation/sample.hg38_multianno.txt final_report/cp QC_results/sample.coverage_metrics.txt final_report/echo "靶向测序分析完成,结果保存在 final_report/ 文件夹中"

将此脚本保存为targeted_seq_pipeline.sh并运行:

bash targeted_seq_pipeline.sh

注意

  • 更改路径和参数以适应您的实验设计和数据格式。

  • 确保输入文件的完整性和参考基因组的一致性。

生信大白记第42记,就到这里,关注我!

下一记,持续更新学习生物信息学的内容!

生信大白记邮箱账号:shengxindabaiji@163.com

生信大白记简书账号:生信大白记

生信大白记CSDN账号:生信大白记

生信大白记微信公众号:生信大白记

加入生信大白记交流群938339543

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值