MNase-seq

1. MNase-seq 简介

MNase-seq(Micrococcal Nuclease Sequencing,微球菌核酸酶测序)是一种用于研究 染色质结构 和 核小体定位 的高通量测序技术。它利用 微球菌核酸酶(Micrococcal Nuclease, MNase) 的特性,选择性消化裸露的DNA,而保留核小体(nucleosome)包裹的DNA片段。随后,对这些DNA片段进行测序,以分析染色质的构象、核小体占据位置及其调控作用。


2. MNase-seq 的原理

MNase-seq 的原理主要基于 MNase 对染色质的选择性降解

  1. MNase 是一种核酸内切酶,具有核糖核酸酶和脱氧核糖核酸酶活性

    • 对游离 DNA(无蛋白结合)高度敏感

      ,可完全降解成小片段。

    • 对核小体保护的 DNA 具有较低的降解能力

      ,因此可用于研究染色质结构。

  2. 核小体是 DNA 与组蛋白形成的基本单位,每个核小体约由 147 bp DNA 围绕 组蛋白八聚体(H2A、H2B、H3、H4 各两份) 形成。

  3. MNase 消化后,核小体保护的 DNA 片段会被富集,并通过高通量测序(NGS)分析核小体的 定位、间隔、占据密度 等信息。


3. MNase-seq 实验流程

(1) 样本制备

  • 选择细胞或组织样本(如哺乳动物细胞、酵母、植物等)。

  • 交联(可选):有时会使用 甲醛交联 来稳定染色质结构,特别是在研究动态核小体时。

  • 细胞裂解,释放染色质。

(2) 微球菌核酸酶(MNase)消化

  • 使用不同浓度的 MNase 处理染色质,以获得不同程度的 DNA 片段化:

    • 短时间消化

      :保留多核小体片段(如二聚体、三聚体)。

    • 长时间消化

      :主要获取单个核小体(~147 bp DNA)。

  • 终止反应,提取DNA。

(3) DNA 片段纯化

  • 使用 酚-氯仿提取 或 磁珠纯化 去除蛋白质等杂质。

  • 琼脂糖凝胶电泳

     或 生物分析仪(Bioanalyzer) 检测片段大小(主要分布在 ~147 bp)。

(4) 构建测序文库

  • 连接测序接头(Adapter ligation)。

  • 选择适当片段大小(~150 bp)。

  • 进行 PCR 扩增,富集目的 DNA 片段。

(5) 高通量测序

  • 采用 Illumina、Nanopore 或 PacBio 平台进行测序(Illumina 最常用)。

  • 生成短读序列(Reads)。

(6) 数据分析

数据分析主要包括:

  1. 数据质控(Quality Control, QC)

    • 使用 FastQC 检查测序数据质量。

    • 过滤低质量 reads 和接头污染。

  2. 比对到参考基因组

    • 使用 Bowtie2 或 BWA 将 reads 对齐到参考基因组。

    • 过滤多重比对的 reads。

  3. 核小体定位分析

    • 计算 核小体占据图谱(nucleosome occupancy map)

    • 识别 核小体空缺区(nucleosome-free regions, NFRs)

    • 使用 NucleoATAC、NPS(Nucleosome Positioning Software) 或 iNPS 进行核小体定位预测。

  4. 可视化

    • 使用 IGV(Integrative Genomics Viewer) 或 UCSC Genome Browser 查看核小体分布。

    • 使用 DeepTools 绘制 核小体占据热图


4. MNase-seq 数据解读

MNase-seq 主要提供如下信息:

  1. 核小体定位(Nucleosome Positioning)

    • 高 MNase 信号区域表示 稳定核小体

    • 低 MNase 信号区域表示 开放染色质或活跃调控区域(如启动子、增强子)。

  2. 染色质可及性(Chromatin Accessibility)

    • 在 活跃基因启动子 处,通常观察到 核小体空缺区(NFR),表明转录因子易于结合。

  3. 动态染色质重塑

    • 比较不同条件下(如药物处理前后)MNase-seq 数据,可揭示 核小体重塑(nucleosome remodeling) 机制。


5. MNase-seq 与其他染色质研究技术的比较

技术研究目标优点缺点
MNase-seq

核小体定位

高分辨率、可检测核小体稳定性

可能存在 MNase 偏好性

ATAC-seq

染色质可及性

无需交联、快速、适用于小细胞数

不能直接解析核小体精确位置

DNase-seq

开放染色质区域

可检测增强子等调控元件

不能分辨核小体精确结构

ChIP-seq

组蛋白修饰

研究组蛋白修饰模式

依赖抗体质量


6. MNase-seq 的局限性

虽然 MNase-seq 是研究核小体结构的重要工具,但仍存在一些限制:

  1. 酶切偏好性(Enzyme Bias)

    • MNase 偏向于切割 A/T 富集区域,可能导致某些区域被过度消化或保护不均匀。

  2. 不能直接研究染色质调控因子

    • 只能提供核小体定位信息,而不能直接检测 组蛋白修饰 或 转录因子结合(需要结合 ChIP-seq)。

  3. 实验条件影响

    • MNase 浓度、消化时间、细胞固定

       等因素会影响核小体占据分析。


7. MNase-seq 的应用

MNase-seq 在染色质结构和基因调控研究中具有广泛应用:

  1. 核小体定位和基因调控

    • 研究启动子区的核小体组织,揭示转录调控机制。

  2. 染色质重塑和表观遗传调控

    • 结合 ChIP-seq,可研究组蛋白修饰如何影响核小体定位。

  3. 癌症和疾病研究

    • 发现 肿瘤细胞 染色质异常,揭示表观遗传调控异常导致的疾病。


8. 结论

MNase-seq 是研究 核小体组织和染色质结构 的强大工具。它可以提供高分辨率的 核小体定位图谱,帮助解析 基因调控机制,但仍需结合其他技术(如 ATAC-seq、ChIP-seq)以获得更全面的染色质调控信息。

以下是一个MNase-seq 数据分析 流程,涵盖从原始数据质控、比对、去除重复、核小体定位分析到可视化的各个步骤,使用常见的生物信息学工具(如 FastQCBowtie2SamtoolsdeepTools 等)。

✅ 环境准备

在执行以下代码前,请确保已安装以下工具:

  • FastQC

    (数据质控)

  • Bowtie2

    (比对工具)

  • Samtools

    (BAM 文件处理)

  • deepTools

    (核小体定位和可视化)

  • bedtools

    (基因组操作)

  • IGV

    (可视化)

如果未安装,可使用以下命令安装:

# 以 Ubuntu/Debian 系统为例sudo apt updatesudo apt install fastqc bowtie2 samtools bedtoolspip install deeptools


📂 1. 数据质控 (Quality Control)

输入文件

  • sample_R1.fastq.gz(MNase-seq 原始数据)
  • sample_R2.fastq.gz(双端数据时)

执行 FastQC

mkdir -p QCfastqc sample_R1.fastq.gz sample_R2.fastq.gz -o QC

查看质控报告​​​​​​​

firefox QC/sample_R1_fastqc.html


 

注意:如果存在低质量碱基、接头污染,可以使用 Trim Galore 进行修剪:​​​​​​​

trim_galore --paired sample_R1.fastq.gz sample_R2.fastq.gz -o trimmed/


 


🔗 2. 将 Reads 比对至参考基因组

索引参考基因组

假设使用 人类基因组 (hg38):​​​​​​​

bowtie2-build hg38.fa hg38

进行比对​​​​​​​

bowtie2 -x hg38 -1 sample_R1.fastq.gz -2 sample_R2.fastq.gz \        -S sample.sam --threads 8 --very-sensitive

参数解释

  • -x

    :基因组索引前缀

  • -1/-2

    :双端测序数据

  • --very-sensitive

    :提高比对准确性

  • --threads

    :多线程加速

将 SAM 转换为 BAM 格式

​​​​​​​
samtools view -Sb sample.sam > sample.bam


 


📊 3. 比对结果统计与过滤

统计比对信息​​​​​​​

samtools flagstat sample.bam


 

去除多重比对和低质量比对​​​​​​​

samtools view -b -q 30 sample.bam > sample.q30.bam

参数解释

  • -q 30

    :只保留 MAPQ ≥ 30(高置信度)的 reads。

去除 PCR 重复​​​​​​​

samtools rmdup sample.q30.bam sample.rmdup.bam


 

排序和建立索引​​​​​​​

samtools sort -o sample.sorted.bam sample.rmdup.bamsamtools index sample.sorted.bam


 


📐 4. 核小体占据区域分析

生成 Fragment Length 分布​​​​​​​

bamPEFragmentSize --bam sample.sorted.bam --outFile fragment_length.txt \                  --plotFile fragment_length.png --samplesLabel "MNase-seq"

目的

  • 单核小体 (~147 bp) 是 MNase-seq 的典型片段长度。

  • 双核小体 (~300 bp) 也可能存在。

提取单核小体区域 (120-180 bp)​​​​​​​

samtools view -h sample.sorted.bam | \awk '{if($9 >= 120 && $9 <= 180) print $0}' | \samtools view -b - > sample.nucleosome.bam


📌 5. 生成核小体占据图谱

生成覆盖度 (bigWig) 文件​​​​​​​

bamCoverage -b sample.nucleosome.bam -o sample.nucleosome.bw \            --binSize 10 --normalizeUsing RPKM

参数解释

  • --binSize 10

    :窗口大小(10 bp)

  • --normalizeUsing RPKM

    :对覆盖度进行 RPKM 标准化


📏 6. 核小体定位 (Peak Calling)

使用 NucleoATAC 进行核小体定位

安装:​​​​​​​

conda install -c bioconda nucleoatac

执行定位:​​​​​​​

nucleoatac run --bam sample.sorted.bam --fasta hg38.fa --out sample_nucleoatac

输出:

  • *_nucpos.bed

    :核小体位置

  • *_nfr.bed

    :核小体空缺区


📊 7. 核小体可视化

在 IGV 中查看核小体

  1. 下载 IGV:https://software.broadinstitute.org/software/igv/

  2. 导入数据:

    • sample.nucleosome.bw

      (核小体覆盖度)

    • *_nucpos.bed

      (核小体定位)

生成热图 (Heatmap)​​​​​​​

computeMatrix reference-point \    --referencePoint TSS \    -b 2000 -a 2000 \    -R genes.bed \    -S sample.nucleosome.bw \    -o matrix.gz
plotHeatmap -m matrix.gz -o nucleosome_heatmap.png

结果:生成的热图直观展示基因启动子周围的核小体分布情况。


📚 8. 结果解读

  • 核小体密集区域

    :染色质紧密、基因不易转录。

  • 核小体空缺区 (NFR)

    :开放染色质,利于转录因子结合。

  • 核小体定位变异

    :比较不同条件下的核小体分布,揭示染色质重塑。


🧰 9. 批处理脚本

如果需要对多个样本进行批量分析,可使用以下 Shell 脚本:​​​​​​​

#!/bin/bashfor sample in $(ls *.fastq.gz | sed 's/_R[12].fastq.gz//' | uniq); do    echo "Processing: $sample"    fastqc ${sample}_R1.fastq.gz ${sample}_R2.fastq.gz -o QC    bowtie2 -x hg38 -1 ${sample}_R1.fastq.gz -2 ${sample}_R2.fastq.gz \            -S ${sample}.sam --threads 8 --very-sensitive    samtools view -Sb ${sample}.sam | samtools sort -o ${sample}.sorted.bam    samtools rmdup ${sample}.sorted.bam ${sample}.rmdup.bam    bamCoverage -b ${sample}.rmdup.bam -o ${sample}.bw --binSize 10 --normalizeUsing RPKMdone

生信大白记第54记,就到这里,关注我!

下一记,持续更新学习生物信息学的内容!

生信大白记邮箱账号:shengxindabaiji@163.com

生信大白记简书账号:生信大白记

生信大白记CSDN账号:生信大白记

生信大白记微信公众号:生信大白记

加入生信大白记交流群938339543

### 单细胞RNA测序 (scRNA-seq) 与批量RNA测序 (bulk RNA-seq) 的区别 #### 技术原理差异 单细胞RNA测序技术能够捕获并分析单一细胞内的转录组信息,从而揭示不同细胞间的异质性和功能特性[^1]。相比之下,批量RNA测序则是通过对大量细胞群体的整体mRNA表达水平进行测量来反映平均基因表达情况[^2]。 #### 数据分辨率对比 由于scRNA-seq专注于个体细胞层面的数据采集,因此它提供了极高的分辨率,可以识别稀有细胞亚型以及研究细胞间变异现象[^3]。而bulk RNA-seq因为是对整个样本中的所有细胞取均值处理,所以其数据粒度较粗,在检测低丰度转录本或者特定条件下仅存在于部分细胞里的分子事件方面存在局限性[^4]。 #### 实验设计考量因素 在实验规划阶段考虑采用哪种方法时需注意成本效益平衡问题:尽管scRNA-seq能提供更精细的结果,但每单位样品所需的费用远高于传统Bulk sequencing方式;另外还需评估目标科学问题是否确实需要如此细致的信息层次——如果只是关注整体趋势变化,则可能无需动用昂贵复杂的single-cell平台即可满足需求[^5]。 #### 生物学意义挖掘角度 通过运用高级计算工具和技术手段对来自这两种不同类型测序产生的大数据集加以解析后发现,利用scRNA-seq可以获得关于肿瘤微环境构成要素之间相互作用关系的新见解,并有助于理解疾病进展机制及开发个性化治疗策略等方面发挥重要作用[^6]。与此同时,bulk RNA-seq仍然广泛应用于基础医学研究领域,比如探索基因调控网络动态调整规律等课题上表现出色[^7]。 ```python import scanpy as sc adata = sc.read_h5ad('example_scRNAseq_data.h5ad') print(adata.obs['cell_type'].value_counts()) ``` 上述Python脚本展示了如何加载一个标准的AnnData对象形式存储的单细胞RNA序列文件,并打印出其中所含各类别细胞数量统计结果的例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值