1.贝叶斯定理
1.1 定义:描述在已知一些条件下,某事件的发生概率
贝叶斯定理是关于随机事件A和B的条件概率的一则定理。
1.2 公式理解
P
(
x
∣
y
)
=
P
(
x
)
P
(
y
∣
x
)
P
(
y
)
P(x|y) =\frac{ P(x)P(y|x)}{P(y)}
P(x∣y)=P(y)P(x)P(y∣x)
其中x以及y为随机事件,且
P
(
y
)
P(y)
P(y)不为零。
P
(
x
∣
y
)
P(x|y)
P(x∣y)是指在y事件发生的情况下,x事件发生的概率。
其中:
P
(
x
∣
y
)
P(x|y)
P(x∣y)是已知y发生后,x的条件概率。也称作x的后验概率。
P
(
x
)
P(x)
P(x)是x的先验概率(或边缘概率)。其不考虑任何y方面的因素。即x与y相互独立
P
(
y
∣
x
)
P(y|x)
P(y∣x)是已知x发生后,y的条件概率。也可称为y的后验概率。
P
(
y
)
P(y)
P(y)是y的先验概率。
贝叶斯定理可表述为:
后验概率 = (似然性*先验概率)/标准化常量
也就是说,后验概率与先验概率和相似度的乘积成正比。
2.贝叶斯理论推导(从条件概率)
2.1 推到
根据条件概率的定义。在事件y发生的条件下事件x发生的概率是:
P ( x ∣ y ) = P ( x ∩ y ) P ( y ) P(x|y)=\frac{P(x \cap y)}{P(y)} P(x∣y)=P(y)P(x∩y)
其中 A与B的联合概率表示为 P ( x ∩ y ) P(x \cap y) P(x∩y)或者 p ( x , y ) p(x,y) p(x,y)或者 p ( x y ) p(xy) p(xy)。
同样地,在事件x发生的条件下事件y发生的概率
P ( y ∣ x ) = P ( y ∩ x ) P ( x ) P(y|x)=\frac{P(y \cap x)}{P(x)} P(y∣x)=P(x)P(y∩x)
联立可得
P ( x ∣ y ) P ( y ) = P ( x ∩ y ) = P ( y ∣ x ) P ( x ) P(x|y){P(y)}={P(x \cap y)} = P(y|x){P(x)} P(x∣y)P(y)=P(x∩y)=P(y∣x)P(x) 若 P ( y ) ≠ 0 P(y) \neq 0 P(y)=0则
P ( x ∣ y ) = P ( x ) P ( y ∣ x ) P ( y ) P(x|y) =\frac{ P(x)P(y|x)}{P(y)} P(x∣y)=P(y)P(x)P(y∣x)得证
2.2 贝叶斯理论的推广
P ( x ∣ y , z ) = P ( x , y , z ) P ( y , z ) P(x| y, z) = \frac{P(x, y, z)}{P(y, z)} P(x∣y,z)=P(y,z)P(x,y,z)
= P ( x , y , z ) P ( y ) P ( z ∣ y ) = \frac{P(x, y, z)}{{P(y)} P(z| y)} =P(y)P(z∣y)P(x,y,z)
= P ( z ∣ x , y ) P ( x , y ) P ( y ) P ( z ∣ y ) = \frac{P(z| x, y) P(x,y)}{{P(y)} P(z| y)} =P(y)P(z∣y)P(z∣x,y)P(x,y)
= P ( x ) P ( y ∣ x ) P ( z ∣ x , y ) P ( y ) P ( z ∣ y ) = \frac{{P(x) P(y| x) P(z|x,y)}}{{P(y)} P(z| y)} =P(y)P(z∣y)P(x)P(y∣x)P(z∣x,y)
一般化的方法则是利用联合概率去分解待求的条件概率,并对不加以探讨的变量积分(意即对欲探讨的变量计算边缘概率)。取决于不同的分解形式,可以证明某些积分必为1,因此分解形式可被简化。利用这个性质,贝叶斯理论的计算量可能可以大幅下降。贝叶斯网络为此方法的一个例子,贝叶斯网络指定数个变量的联合概率分布的分解型式,该概率分布满足下述条件:当其他变量的条件概率给定时,该变量的条件概率为一简单型式。
3 贝叶斯公式理解实例
3.1 通过开车过程中对十字路口来理解贝叶斯公式
P
(
A
∣
B
)
=
P
(
A
)
P
(
B
∣
A
)
P
(
B
)
P(A|B) =\frac{ P(A)P(B|A)}{P(B)}
P(A∣B)=P(B)P(A)P(B∣A)
因此贝叶斯公式实际上阐述了这么一个事情:
新信息出现后对A事件的概率预测 = A事件的鲜艳概率 * 新信息带来的调整
我们再通过韦恩图来理解一下这个事情(为了观看方便,下面的A,B的圆形面积是示意):
新的信息的出现,比如之前看到了亮着右转弯灯的车,就好比知道点已经落入了B。
3.2 实例理解贝叶斯公式小结
可以看到,有形的十字路口,却看不到明天是否下雨,我们可以看到前方是否有路障,却不清楚下一次飞机是否会出事。甚至有时候,眼睛还会欺骗我们。
很多时候,我们不得不看着后视镜开车,这个时候概率论、贝叶斯定理就是我们的指路明灯。
看着后视镜开车,肯定常常会撞车,没关系,我们可以不断的去修正我们的假设。
比如,撞了几次车之后,就发现可能之前估计的在十字路口打右转弯灯的数据明显偏大了,我们修正之后再继续开车。我们人类的学习,本身也是一个试错的过程。