一文带你了解基于大模型的Agent

本文介绍了大型语言模型在智能体技术中的核心作用,探讨了基于LLM的智能体设计原理、应用场景、局限性以及面临的挑战,包括角色适应性、上下文长度限制、提示鲁棒性和知识边界控制。同时,文章概述了关键组件如用户请求、规划、记忆和工具,以及如何通过技术创新来优化智能体的性能和用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Datawhale干货 

作者:陈安东,Datawhale成员

前 言

在当前信息时代,大型语言模型(Large Language Models,LLMs)的发展速度和影响力日益显著。大模型强大的推理以及生成能力成为了搭建智能体的最好的组件。本内容来源于Datawhale的开源的“生成大模型基础(so-large-lm)”,一个致力于探索和理解大型模型发展的前沿课程:https://github.com/datawhalechina/so-large-lm

44d291226d372c2e8ccaa767a3184405.png

通过该开源课程,读者将能够获得对智能体较为全面的理解,掌握它们的设计原理、优势、应用场景以及当前的局限性。我们希望这份该课程能够为广大学习者提供价值,促进对大模型理论基础知识的深入学习和应用,同时激发更多的创新和探索。

简 介

在科技发展的历史中,人类一直试图打造一种可以自主完成预设目标的代理或实体,即智能体 (AI Agents 或 Agents),以协助人类完成各种各样繁琐的任务。多年来,智能体作为人工智能一个活跃的应用领域吸引人们不断地研究探索。如今,大语言模型正蓬勃发展,日新月异。

在智能体技术的实现上,尤其是在基于大型语言模型(LLM)的智能体构建中,LLM在智能体的智能化中扮演着至关重要的角色。这些智能体能够通过整合LLM与规划、记忆以及其他关键技术模块,执行复杂的任务。在此框架中,LLM充当核心处理单元或“大脑”,负责管理和执行为特定任务或响应用户查询所需的一系列操作。

以一个新的例子来展示LLM智能体的潜力,设想我们需要设计一个系统来应对以下询问:

当前欧洲最受欢迎的电动汽车品牌是什么?

这个问题可直接由一个更新至最新数据的LLM给出答案。若LLM缺乏即时数据,可以借助一个RAG(检索增强生成)系统,其中LLM可以访问最新的汽车销售数据或市场报告。

现在,让我们考虑一个更为复杂的查询:

过去十年里,欧洲电动汽车市场的增长趋势如何,这对环境政策有何影响?能否提供这一时期内市场增长的图表?

仅依赖LLM来解答此类复杂问题是不够的。虽然结合LLM与外部知识库的RAG系统能提供某种帮助,但要全面回答这个问题,还需要更进一步的操作。这是由于要解答这个问题,首先需要将其拆解成多个子问题,其次需要并通过特定的工具和流程进行解决,最终获得所需答案。一个可能的方案是开发一个能够访问最新的环境政策文献、市场报告以及公开数据库的LLM智能体,以获取关于电动汽车市场增长及其环境影响的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值