理解与证明“线性无关的特征向量的个数=若当块个数”


1.1 问题

若当标准形中,有一条性质说:一个矩阵的线性无关的特征向量个数等于其若当标准形的若当块个数。结论是简洁的,证明是有复杂的。


1.2 理解与证明

首先说明,以下的 n n n 阶方阵 A A A 是满秩的。

对于 n n n 阶方阵 A A A,总存在相似的若当标准形矩阵,即存在非奇异矩阵 P P P 与若当标准形 J J J,使得:

P − 1 A P = J (1.1) P^{-1}AP=J \tag{1.1} P1AP=J(1.1)

进而可得:
A = P J P − 1 (1.2) A=PJP^{-1} \tag{1.2} A=PJP1(1.2)

设矩阵 A A A 的其中一个特征根为 λ \lambda λ,与 λ \lambda λ 对应的特征向量为 x x x,则:
A x = λ x (1.3) Ax = \lambda x \tag{1.3} Ax=λx(1.3)

即:

( λ I − A ) x = 0 (1.4) (\lambda I - A) x = 0 \tag{1.4} (λIA)x=0(1.4)

I = P P − 1 I=PP^{-1} I=PP1 A = P J P − 1 A=PJP^{-1} A=PJP1 代入可得:

( λ P P − 1 − P J P − 1 ) x = 0 (1.5) (\lambda PP^{-1}- PJP^{-1}) x = 0 \tag{1.5} (λPP1PJP1)x=0(1.5)

整理得:
P ( λ I − J ) P − 1 x = 0 (1.6) P(\lambda I- J)P^{-1} x = 0 \tag{1.6} P(λIJ)P1x=0(1.6)

两边同时左乘 P − 1 P^{-1} P1 且令 y = P − 1 x y = P^{-1}x y=P1x 可得:
( λ I − J ) y = 0 (1.7) (\lambda I- J)y = 0 \tag{1.7} (λIJ)y=0(1.7)

其中, y y y x x x 的线性变换,且有 x = P y x = Py x=Py

设若当标准形 J J J 共有 r r r 个若当块。一个特征值出现在一个或多个若当块里,不妨设 λ = λ 1 \lambda = \lambda_1 λ=λ1 同时出现在 J 1 , . . . , J k ( 1 ≤ k ≤ r ) J_1, ..., J_k(1 \le k \le r) J1,...,Jk(1kr) 中,此时 R ( λ 1 I − J 1 , . . . , k ) = m 1 , . . . , k − k R(\lambda_1 I - J_{1,...,k}) = m_{1,...,k}-k R(λ1IJ1,...,k)=m1,...,kk。其中, m 1 , . . . , k m_{1,...,k} m1,...,k 为前 k k k 个若当块组成的矩阵的秩。此时, ( λ 1 I − J 1 , . . . , k ) y 1 , . . . , k = 0 (\lambda_1 I- J_{1,...,k} )y_{1,...,k} = 0 (λ1IJ1,...,k)y1,...,k=0 k k k 个自由的变量,而 ( λ 1 I − J i ) y i = 0 ( i = k + 1 , . . . , r ) (\lambda_1 I- J_{i} )y_i= 0(i=k+1,...,r) (λ1IJi)yi=0(i=k+1,...,r) 的解都为零。合起来, ( λ 1 I − J ) y = 0 (\lambda_1 I- J)y = 0 (λ1IJ)y=0 共有 k k k 个线性无关的解。可见,一个特征向量出现在 k k k 个若当块中, ( λ i I − J ) y = 0 (\lambda_i I- J)y = 0 (λiIJ)y=0 就有 k k k 个线性无关的解。由于 x = P y x=Py x=Py k k k y y y 对应 k k k x x x,矩阵 A A A 也就有 k k k 个线性无关的特征向量。若当块数量和线性无关的特征向量的数量一致。


最后这段话比较抽象,不妨看几个例子:

假设一个三阶的若当块,分几种情况讨论。

  1. 一个特征值只出现在一个Jordan块里,设有三个不同的特征值 λ 1 , λ 2 , λ 3 \lambda_1, \lambda_2, \lambda_3 λ1,λ2,λ3,则:
    J = [ λ 1 0 0 0 λ 2 0 0 0 λ 3 ] J=\left [\begin {array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{array} \right ] J=λ1000λ2000λ3容易发现,该系统共有 3 个Jordan块, λ 1 \lambda_1 λ1 出现 J 1 J_1 J1 里, R ( λ 1 I − J 1 ) = 0 R(\lambda_1 I - J_1) = 0 R(λ1IJ1)=0 ( λ 1 I − J 1 ) y 1 = 0 (\lambda_1 I - J_1 )y_1 = 0 (λ1IJ1)y1=0 有非零解。 R ( λ 1 I − J 1 ) = 2 R(\lambda_1 I - J_1) = 2 R(λ1IJ1)=2 ( λ 2 , 3 I − J 2 , 3 ) y 2 , 3 = 0 (\lambda_{2,3} I - J_{2,3} )y_{2,3} = 0 (λ2,3IJ2,3)y2,3=0只有零解,因此 ( λ 1 I − J ) y = 0 (\lambda_1 I - J )y = 0 (λ1IJ)y=0 有一组线性无关的解 y = [ a , 0 , 0 ] ( a ≠ 0 ) y=[a, 0, 0](a\neq 0) y=[a,0,0](a=0)。同理, ( λ 2 I − J ) y = 0 (\lambda_2 I - J )y = 0 (λ2IJ)y=0 ( λ 3 I − J ) y = 0 (\lambda_3 I - J )y = 0 (λ3IJ)y=0 各有一组线性无关的非零解。因此式(1.7) 共有3个线性无关的解,又 x = P y x = Py x=Py,故矩阵 A A A 共有3个线性无关的特征向量,与Jordan块数量一致。

  2. 一个特征值只出现在一个Jordan块里,且有想同的特征值 λ 1 , λ 1 , λ 2 \lambda_1, \lambda_1, \lambda_2 λ1,λ1,λ2,则:
    J = [ λ 1 1 0 0 λ 1 0 0 0 λ 2 ] J=\left [\begin {array}{ccc} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{array} \right ] J=λ1001λ1000λ2 λ = λ 1 \lambda = \lambda_1 λ=λ1 时, ( λ 1 I − J 1 ) y 1 = 0 (\lambda_1 I - J_1)y_{1} = 0 (λ1IJ1)y1=0 的解为 y 1 = [ a , 0 ] y_{1}=[a, 0] y1=[a,0] ( λ 1 I − J 2 ) y 2 = 0 (\lambda_1 I - J_2 )y_2 = 0 (λ1IJ2)y2=0的解为 0。合起来, ( λ 1 I − J ) y = 0 (\lambda_1 I - J )y = 0 (λ1IJ)y=0 的解为 y = [ a , 0 , 0 ] ( a ≠ 0 ) y=[a, 0, 0](a \neq 0) y=[a,0,0](a=0)。同理, ( λ 2 I − J ) y = 0 (\lambda_2 I - J )y = 0 (λ2IJ)y=0有一个解。共得到两个线性无关的解,相应地, x = P y x=Py x=Py,矩阵 A A A 有两个线性无关的特征向量,和若当块数量一致。

  3. 一个特征值只出现在多个Jordan块里,且有想同的特征值 λ 1 , λ 1 , λ 2 \lambda_1, \lambda_1, \lambda_2 λ1,λ1,λ2,则: J = [ λ 1 0 0 0 λ 1 0 0 0 λ 2 ] J=\left [\begin {array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{array} \right ] J=λ1000λ1000λ2 ( λ 1 I − J 1 , 2 ) y 1 , 2 = 0 (\lambda_1 I - J_{1,2})y_{1,2} = 0 (λ1IJ1,2)y1,2=0 共有两个自由解, ( λ 1 I − J 3 ) y 3 = 0 (\lambda_1 I - J_{3})y_{3} = 0 (λ1IJ3)y3=0 有零解,合起来, ( λ 1 I − J ) y = 0 (\lambda_1 I - J)y = 0 (λ1IJ)y=0 有两个线性无关的解。而 ( λ 2 I − J ) y = 0 (\lambda_2 I - J)y = 0 (λ2IJ)y=0 有一个线性无关的解。 ( λ i I − J ) y = 0 ( i = 1 , 2 ) (\lambda_i I - J)y = 0(i=1,2) (λiIJ)y=0(i=1,2) 共有 3 个线性无关的解,相应地, x = P y x=Py x=Py,矩阵 A A A 有3 个线性无关的特征向量。

— 完 —

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大强强小强强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值