《人工智能算法工程师(初级)》

工业和信息化部《人工智能算法工程师(中级)》职业能力培训项目

工信部课程链接:

工业和信息化部《人工智能算法工程师》职业能力培训项目https://www.tech-skills.org.cn/#%2FsubjectGradeList%2F84

学员须知

学员完成学习后,参加工信部教育与考试中心组织的统一考试,合格者将获得由工信部教育与考试中心颁发的“工业和信息化职业能力证书”(电子版,可下载打印),纳入到“工业和信息化技术技能人才数据库”,可在官网查询。优秀学员将有机会参加教育考试中心或课程项目方组织的主题会议、课程沙龙等活动,并享受就业服务指导及相关优秀企业推荐就业等服务。

  • 课程定位

本项目课程是《人工智能算法工程师(初级)》职业能力培训的系列课程。课程适合对人工智能感兴趣的零基础学员、转行人员,互联网从业人员、应往届毕业生。


本课程属于人工智能基础课程,内容丰富,涵盖面广,浅显易懂。内容包括了人工智能基础概念知识、人工智能的发展历程、人工智能的流派类别、人工智能项目的开发流程、人工智能的应用场景分析、Python编程、数学基础、NumPy数据编程、图像框架:MatplotLib 、PIL等内容。


学习完本课程,并通过考试,将会获得由工业和信息化部教育与考试中心颁发的《人工智能算法工程师(初级)》职业能力证书。

  • 学员对象

1、政府及企、事业单位相关岗位的在职人员;

2、大中专院校相关专业在读学生;

3、对人工智能技术感兴趣的其他人员。

注:证书报考条件以工信部教育与考试中心《人工智能算法工程师职业能力等级评价标准》为准。

  • 课程内容

50 课时(线上必修课)+ 配套代码习题 + 答疑群(每天晚上固定时间答疑)

《人工智能算法工程师(初级)》必修课列表:

说明:线上学习有效期 1 年,学员自由安排时间。

  • 学习资料(电子版) 

1)、学习视频

2)、配套代码资料

3)、学习答疑群

  • 学习收获

1、《人工智能算法工程师(初级)》专业知识及技能

2、《人工智能算法工程师(初级)》职业能力证书(考试通过)

3、进入工业和信息化专业人才库(考试通过)

4、达到企业中普通初级算法人员能力水平

### 关于人工智能算法工程初级的学习资源 对于希望成为初级算法工程师的人士而言,构建坚实的基础至关重要。一份合理的学习路径能够帮助学习者逐步掌握所需技能并最终胜任岗位需求[^1]。 #### 基础知识准备 - **编程语言**:Python 是最常用的语言之一,在机器学习领域尤为流行;C/C++ 则适合那些想要深入了解底层机制以及高性能应用开发的学习者。 - **数学基础**:线性代数、概率论与统计学是理解许多高级概念不可或缺的部分。 #### 核心技术栈 - **数据处理能力**:熟悉 Pandas 和 NumPy 库可以极大地提高数据分析效率。 - **模型训练框架**:TensorFlow 或 PyTorch 提供了强大的工具集来支持神经网络的设计与部署。 - **经典算法理论**:除了常见的排序查找外,还需涉猎图论、动态规划等领域内的高效解决方案。 #### 实践项目积累 参与实际项目的建设有助于巩固所学到的知识点,并培养解决复杂问题的能力。可以从简单的案例入手,例如基于 Minimax 的博弈树搜索用于五子棋游戏中的人工智能决策制定过程[^2]。 ```python def minimax(position, depth, maximizingPlayer): if depth == 0 or game_over(position): return evaluate_position(position) if maximizingPlayer: maxEval = float('-inf') for move in get_possible_moves(position): eval = minimax(make_move(position, move), depth - 1, False) maxEval = max(maxEval, eval) return maxEval else: # minimizing player minEval = float('inf') for move in get_possible_moves(position): eval = minimax(make_move(position, move), depth - 1, True) minEval = min(minEval, eval) return minEval ``` 此代码片段展示了如何使用递归来实现 MiniMax 算法的核心逻辑,该方法广泛应用于二人零和游戏中的最佳策略寻找上。 #### 社区交流平台 积极参加线上论坛和技术会议也是获取最新资讯的好途径。GitHub 上有许多开源项目可供贡献代码,Stack Overflow 能够解答遇到的技术难题,而像 Coursera 这样的在线教育网站则提供了丰富的付费/免费课程资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值