自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性

前一节笔记详见 自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

一、一阶离散系统的比例控制

我们在前一个笔记介绍过一阶离散(DT)系统和 P 控制器,控制器和一阶系统由如下方程组成:

P 控制器:u[n]=K_{p}(T_{d}[n]-T_{m}[n])

被控对象:\frac{T_{m}[n]-T_{m}[n-1]}{\Delta T}=\gamma u[n-1]

把第一个方程代入第二个方程,得

\frac{T_{m}[n]-T_{m}[n-1]}{\Delta T}=\gamma K_{p}(T_{d}[n-1]-T_{m}[n-1])

化简,得

T_{m}[n]=(1-\gamma K_{p}\Delta T)T_{m}[n-1]+\gamma \Delta T K_{p} T_{d}[n-1]

该方程具有一阶离散系统的形式:

y[n]=\lambda y[n-1]+bx[n-1]        (1)

其中 y[n] 是我们需要求解的变量,x[n] 是我们设置的输入函数,\lambda 是固有频率(原因之后会讲到),b 是一个常数。在下一节,我们会研究这个系统的解以及方程(1)的性质。

二、一阶离散系统的解

我们对方程(1)进行分类讨论:

情形一:对于所有 n ,x[n] = 0(也称为零输入响应,ZIR)

方程可以化简为 y[n]=\lambda y[n-1] 。

容易得到该方程的解为

y[n]=\lambda^{n} y[0]

这是最简单的情形,其中稳态解由 \lambda 的值决定。

如果 \left | \lambda \right |<1 ,则 y[\infty ]=0 ;

如果 \lambda =1 ,则 y[\infty ]=y[0] ;

如果 \lambda =-1 ,则 y[n]=(-1)^{n}y[0] ,不收敛 ;

如果 \left | \lambda \right | >1 ,则 \left | y[\infty ] \right |\rightarrow \infty ,不收敛。

情形二:对于所有 n ,x[n] = 1,且 y[n] = 0(也称为零状态响应,ZSR)

注意:在零状态响应中,x[n] 可以为任何函数,这里我们定义 x[n] = 1 。

方程可以化简为

y[n]=\lambda y[n-1]+b        (2)

假设解是收敛的,我们想知道 y[\infty ] 。由于

y[\infty ]=\lambda y[\infty ]+b

y[\infty ]=\frac{b}{1-\lambda }

接下来我们想得到 y[n] 。从 y[0] 不断迭代,于是

y[0]=0

y[1]=\lambda y[0]+b=b

y[2]=\lambda y[1]+b=\lambda b+b

y[3]=\lambda y[2]+b=\lambda^{2} b+\lambda b+b

最终,我们得到

y[n]=\sum_{m=0}^{n-1}\lambda ^{m}b 和 y[\infty ]=\sum_{m=0}^{\infty }\lambda ^{m}b

于是

y[n]=y[\infty ]-\sum_{m=n}^{\infty }\lambda ^{m}b=y[\infty ]-\lambda ^{n}\sum_{m=0}^{\infty }\lambda ^{m}b=y[\infty ]-\lambda ^{n}y[\infty ]

代入 y[\infty ] 的值,我们得到

y[n]=\frac{b}{1-\lambda }(1-\lambda ^{n})        (3)

我们想知道解长什么样子,令 b = 1 ,分 6 种情况讨论:

  1. \lambda >1 ,解发散;
  2. \lambda <-1 ,解发散;
  3. \lambda =-1 ,解发散;
  4. \lambda =1 ,解发散;
  5. 0<\lambda <1 ,解收敛;
  6. -1<\lambda <0 ,解收敛。

现在我们终于知道了如何求解一阶离散(DT)系统,然后我们再返回到之前3D打印机的例子。再强调一遍,\lambda 决定了系统的解是否收敛,故选择合适的 \lambda 是设计稳定系统的关键。

三、在一阶系统选择 Kp:稳定性,稳态误差和收敛性

返回到之前3D打印机的例子,该系统的系统方程为:

T_{m}[n]=(1-\gamma K_{p}\Delta T)T_{m}[n-1]+\gamma \Delta T K_{p} T_{d}[n-1]

那我们该如何选择 K_{p} 来构建一个“合适的”控制器?

首先,由第二节中方程(2)对应找到 \lambda 和 b ,则

\lambda =1-\gamma K_{p}\Delta T

b=\gamma \Delta T K_{p} T_{d}[n]

这里我们假设目标温度 Td[n] 为一个常数。

接下来我们逐一分析该系统的性能指标:

(1)稳定性:

-1<\lambda <1

-1<1-\gamma K_{p}\Delta T<1

\frac{2}{\gamma \Delta T}>K_{p}>0

在这个控制问题中,Kp 必须在上述范围中才能使得系统稳定(即 T_{m}[\infty ] 有界)。

(2)稳态误差:

我们可以使用稳态解来判断这个系统是否有稳态误差,于是

T_{m}[\infty ]=y[\infty ]=\frac{b}{1-\lambda }=\frac{\gamma \Delta T K_{p} T_{d}[\infty ]}{1-(1-\gamma K_{p}\Delta T)}=T_{d}[\infty ]

在这个系统中,T_{m}[\infty ]=T_{d}[\infty ] 。只要这个系统稳定,则稳态误差为零。当然,在某些系统中,稳态误差不一定为零,这个系统只是一个特例,Kp 的值会影响稳态误差。

(3)收敛速度:

虽然我们得到了 Kp 的大致范围,但没有找到最优的 Kp ,且这个系统中有许多模块需要优化。在本例中,我们希望 T_{m}[n] 能快速逼近 T_{d}[n] 。在第二节中得到的函数(3)中,

y[n]=\frac{b}{1-\lambda }(1-\lambda ^{n})

我们随便令 \lambda =0 ,则

y[1]=\frac{b}{1}(1)=b

我们发现,这个系统只需一步就可以达到目标温度,收敛速度很快。在现实生活中,系统常常受外部噪声干扰,因此在设计控制器时需要考虑多方面的因素。

关于线性定常系统的介绍,详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值