摘要:
知识图谱是一种用于表示实体和实体之间关系的有向图结构,它在许多人工智能任务中起着重要的作用。然而,由于真实世界的知识图谱通常是稀疏的,且缺乏完备的信息,传统的推理方法在这种情况下往往效果不佳。本文提出了一种基于动态预测和深度学习的方法,以在稀疏知识图谱上实现多跳推理。该方法通过使用深度学习模型来预测图谱中缺失的信息,并将这些预测结果应用于多跳推理过程中。我们还提供了相应的源代码,以便读者可以进一步研究和实现该方法。
-
引言
知识图谱是一种用于存储和表示实体之间关系的图形结构。它在许多领域中被广泛应用,如自然语言处理、问答系统和推荐系统等。然而,真实世界的知识图谱通常是稀疏的,即某些实体之间的关系缺乏完备的信息。这导致了传统的推理方法在稀疏知识图谱上的应用受限。 -
方法
为了解决稀疏知识图谱上的多跳推理问题,我们提出了一种基于动态预测和深度学习的方法。该方法主要包括以下步骤:
2.1 数据预处理
我们首先对知识图谱进行预处理,将其表示为稀疏矩阵的形式。每个实体和关系都被编码为唯一的整数标识符,并构建一个稀疏邻接矩阵来表示它们之间的关系。
2.2 动态预测
我们使用深度学习模型来进行动态预测,以填补知识图谱中的缺失信息。具体而言,我们设计了一个神经网络模型,该模型接受一个实体对作为输入,并预测它们之间的关系。通过在训练过程中最小