大模型“特工”时代来了!一个你可能错过的重磅消息

最近的AI圈,有个“大事”被多数人忽视了。

2025年1月,OpenAI悄然发布了DeepResearch,这是基于O3模型的一个变种,专攻网络搜索与文献检索。和过去的LLM(大语言模型)不同,它能通过强化学习(RL)来设计搜索策略,自主交叉比对不同的知识来源,像个经验丰富的科研工作者一样,在网络与文档的海洋中游刃有余地找答案。

这种看似平凡的升级背后,是一场LLM领域深刻的革命:

LLM不再只是被动生成文本的“复读机”,而开始像真正的“特工”(Agent)那样,主动规划行动,主动思考下一步怎么走。

什么是真正的“特工式”LLM?

Anthropic公司最近提出了一个新定义:

特工型LLM是一种能动态自主地决定自己的任务流程和工具使用方式,并始终掌控任务进展的系统。

对比之下,目前广泛流行的“工作流”(Workflow)式的AI,比如最近爆红的Manus AI,本质上就是一套预先设计好的规则与Prompt脚本:模型始终被锁定在固定的思维路径上,只能机械执行预设的指令。一旦遇到意外或新奇的任务,它们就很容易卡顿,甚至彻底“迷失方向”。

举个例子:

  • 工作流式LLM遇到问题时的表现是:“哎呀,这题我没见过,我放弃了!”
  • 特工型LLM遇到同样问题则会:“等等,我试试另一个方案,再不行我再回头看看有没有漏掉什么关键线索!”

苦涩的教训:“Prompt”终究无法通向“通用智能”

在AI发展史上,著名的“苦涩教训”(Bitter Lesson)一直在反复上演:

短期来看,人们总喜欢把自己的智慧强行灌输给AI,试图靠手写规则快速提高性能。但长期来看,真正的突破往往是通过更多的数据、更大的模型和更开放的学习方式取得的。

目前流行的Prompt Engineering其实就犯了这个错误:靠不断地精心设计Prompt和规则,试图引导AI走正确的路。结果是短期有效,但长期而言只能陷入停滞:因为Prompt无法真正让模型学会自主思考和规划。

而真正的特工型LLM则走向了完全不同的道路:

  • 不再预设Prompt,而是让模型自己去探索;
  • 不再硬编码知识,而是通过强化学习(RL)让模型自主总结规律;
  • 不再被动生成单一结果,而是尝试多个方案,通过反馈自行学习最优路径。这条路,虽然更艰难,但却是真正通向通用智能的道路。

这条路,虽然更艰难,但却是真正通向通用智能的道路。
请添加图片描述

“特工型”LLM如何炼成?

如何训练出能自主探索、自主规划的特工型LLM呢?秘诀只有一个:强化学习 + 推理(RL+Reasoning)。

训练过程简单来说就是:

  1. 设定目标:给LLM一个任务,比如“找到一种1960年苏联发表的化学实验方法”;
  2. 让模型自己探索:模型生成多个搜索策略,比如搜索不同的关键词、切换不同的文献数据库;
  3. 反馈和强化:如果找到正确答案,给予奖励;如果失败了,让它自行调整策略,再次尝试。

通过反复训练,模型逐渐学会了像专业研究人员一样去规划行动、分解任务、试错纠正,最终形成了稳定的自主决策能力。

这种训练方法最近在代码编程领域已经取得巨大成功,比如Claude Sonnet 3.7模型,能自主完成复杂编程任务,甚至超过了以往任何基于Prompt的编排系统。

LLM特工:超越Prompt,实现自主行动

你可能会问:特工型LLM具体能干些什么?

举几个可能出现的未来应用场景:

  • 科研助手:输入复杂问题,它自主查阅学术资料、交叉验证多个来源,给出一份高质量研究报告;
  • 金融特工:自动分析多个金融标准协议(如ISO 20022与MT103),快速给出精准的翻译与建议;
  • 网络工程师:自行规划网络部署方案,自动生成配置文件,甚至主动排查故障;
  • 日常助手:帮你自动安排旅行,订酒店机票,随时应对突发状况,无需再操心那些反复琐碎的细节。

未来,这样的特工LLM不再需要你去想尽办法提示它该怎么做,而是主动理解你的需求,像人类专家一样完成任务。换句话说:

你不再需要Prompt一个特工,而只需要给出一个任务。

写在最后:拥抱AI特工新时代

未来的LLM将不再只是被动的工具,而是真正意义上的智能伙伴:它们能思考、能规划、能主动行动,就像一群无形的“专家”时刻守候在你身边。

在AI史上,我们无数次经历“苦涩的教训”,但终将迎来更加甜美的果实。真正的“特工”时代,才刚刚拉开帷幕。

准备好了吗?AI特工,即将登场。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值