《Moveit-基础篇3》机械臂关节介绍

介绍

通过本篇文章学习,你可以收获以下内容

了解机械臂基础关节类型

版本平台

系统版本:ubuntu20.04

ROS版本:noetic

Moveit版本:moveit-noetic

一、机械臂关节的分类

  1. 旋转关节(Revolute Joint):

    • 特点:以某一固定轴为中心,执行旋转运动。

    • 应用:大多数机械臂的基本构造关节,用于实现灵活的角度调整。

    • 示例:工业机器人中广泛应用的关节类型。

  2. 滑动关节(Prismatic Joint):

    • 特点:沿直线轨道进行平移运动,通常也被称为线性关节。

    • 应用:适用于需要直线伸缩的场景,例如物料装配或搬运任务。

    • 示例:物流分拣机械臂中的抓取装置。

  3. 球面关节(Spherical Joint):

    • 特点:支持三自由度的旋转运动,能够模拟人体肩关节的功能。

    • 应用:用于复杂运动需求较高的机器人,例如医疗手术机械臂。

  4. 其他关节:

    • 螺旋关节(Screw Joint):结合旋转和平移运动。

    • 平面关节(Planar Joint):允许沿平面运动和旋转。

本文主要针对前两种关节进行介绍

二、旋转关节

旋转关节的特点与应用

旋转关节(Revolute Joint)是机械臂中最常见的关节类型,其灵活性和多功能性使其成为大多数机器人设计的核心组件。

1. 旋转关节的结构

旋转关节通常由以下几部分组成:

  • 轴承与轴心: 提供支撑并确保关节的旋转运动平稳。

  • 驱动系统: 采用伺服电机、步进电机或液压驱动来提供旋转动力。

  • 传感器: 用于监测旋转角度、速度等参数,确保精确运动。

2. 旋转关节的优点
  • 高灵活性: 允许机械臂围绕固定轴进行旋转,能够适应多角度操作需求。

  • 多功能性: 可通过多个旋转关节组合,实现复杂的多自由度运动。

  • 结构简单: 相较于球面关节,旋转关节的设计和维护更为简单。

3. 旋转关节的局限性
  • 自由度有限: 单个旋转关节仅能实现一个旋转自由度。

  • 负载能力受限: 过大的负载可能影响关节的精度和寿命。

  • 控制复杂性: 在多关节系统中,需要协调多个旋转关节的运动,增加控制难度。

4. 典型应用场景
  • 工业机器人: 如六轴机械臂,利用多个旋转关节实现复杂路径规划。

  • 医疗手术: 手术机器人通过旋转关节完成精确的微创操作。

  • 服务机器人: 家用机器人利用旋转关节灵活调整运动方向。

三、滑动关节

滑动关节的特点与应用

滑动关节(Prismatic Joint)作为机械臂中的重要组成部分,以其独特的直线运动能力,在特定场景下有着不可替代的作用。

1. 滑动关节的结构

滑动关节的核心是一个滑轨系统,其设计能够保证运动的平稳性和精确性。典型的滑动关节包括以下部分:

  • 滑轨:用来限制和引导直线运动的路径。

  • 驱动装置:包括伺服电机或液压系统,用于提供动力。

  • 支撑组件:如滚珠丝杆、导轨滑块,减少摩擦并增强稳定性。

2. 滑动关节的优点
  • 直线运动精准性高: 滑轨系统的设计使得机械臂能够以极高的精度完成平移任务。

  • 负载能力强: 滑动关节适合用在需要高负载能力的场景,例如运输重物或装配大型工件。

  • 易于控制: 相较于复杂的旋转运动,直线运动在控制系统中更易建模。

3. 滑动关节的局限性
  • 运动范围有限:滑轨的长度决定了滑动关节的最大平移范围。

  • 灵活性较低:仅能在单一方向上运动,无法实现复杂的多自由度操作。

  • 维护要求较高:滑轨系统需要定期润滑和清洁以保证精度。

4. 典型应用场景
  • 工业生产线: 滑动关节用于搬运和装配流水线中的直线取放任务。

  • 物流分拣: 在自动化仓储系统中,滑动关节机械臂用于抓取和分类物品。

  • 精密加工: 滑动关节可以用于CNC机床的工具位置调整。

滑动关节与其他关节的比较

属性滑动关节旋转关节球面关节
自由度1(平移)1(旋转)3(旋转)
灵活性较低中等
典型应用直线取放、抓取角度调整、关节灵活运动高自由度复杂操作
运动范围受轨道长度限制取决于设计可实现大范围运动
控制难度

四、urdf文件关节配置

旋转关节(Revolute Joint)的URDF配置

旋转关节的核心是定义绕固定轴的旋转运动,使用type="revolute",同时需要指定旋转轴(axis)、关节限制(limit)以及动力学参数(dynamics)。若使用type="continuous"则旋转关节没有施加限制,该关节会绕指定旋转轴进行360度或更大的连续旋转。

示例urdf文件
<joint name="joint1" type="revolute">
  <parent link="link1"/> <!-- 父链接 -->
  <child link="link2"/>  <!-- 子链接 -->
  <origin xyz="0 0 0" rpy="0 0 0"/> <!-- 关节在父链接中的位姿 -->
  <axis xyz="0 0 1"/> <!-- 旋转轴方向 -->
  <limit effort="10" velocity="1.0" lower="-1.57" upper="1.57"/> <!-- 限制参数 -->
  <dynamics damping="0.1" friction="0.2"/> <!-- 动力学参数 -->
</joint>
说明:
  1. axis:定义关节的旋转轴方向,通常为单位向量。例如xyz="0 0 1"表示绕Z轴旋转。
  2. limit
    • effort:关节所能承受的最大力矩。
    • velocity:关节的最大转速(弧度/秒)。
    • lowerupper:关节旋转的角度范围(弧度)。
  3. dynamics
    • damping:关节的阻尼系数。
    • friction:关节的摩擦系数。

滑动关节(Prismatic Joint)的URDF配置

滑动关节的核心是沿特定方向的平移运动,使用type="prismatic",需要定义运动轴以及位移限制等参数。

示例urdf文件
<joint name="joint2" type="prismatic">
  <parent link="link2"/>
  <child link="link3"/>
  <origin xyz="0 0 0" rpy="0 0 0"/>
  <axis xyz="1 0 0"/> <!-- 平移轴方向 -->
  <limit effort="100" velocity="0.5" lower="0.0" upper="0.2"/> <!-- 限制参数 -->
  <dynamics damping="0.05" friction="0.1"/>
</joint>
说明:
  1. axis:定义关节的平移方向。例如xyz="1 0 0"表示沿X轴平移。
  2. limit
    • effort:关节所能承受的最大推力。
    • velocity:关节的最大平移速度(米/秒)。
    • lowerupper:关节的平移范围(米)。
  3. dynamics:同样可以定义阻尼和摩擦参数。

五、机械臂示例展示


### 机械轨迹规划入门基础知识 #### 轨迹规划的核心概念 机械的轨迹规划涉及定义机械如何从起始位置移动到目标位置的过程。它不仅关注路径本身,还考虑时间参数化以及运动的速度和加速度特性[^1]。 #### 路径与轨迹的区别 路径规划主要解决的是找到一条无碰撞的空间几何路径,而轨迹规划则进一步引入了时间维度,使得路径上的每一点都对应特定的时间戳,从而形成完整的运动描述[^2]。 #### 基本方法和技术 对于初学者来说,可以先掌握一些基础的技术手段来实现简单的轨迹规划: - **线性插值 (Linear Interpolation)** 这是最简单的方法之一,在关节空间中通过连接两个配置点的方式生成平滑过渡。尽管这种方法容易理解并快速实施,但它可能无法满足更复杂的动态需求[^3]。 - **多项式插值** 使用三阶或五阶多项式函数来进行路径点间的光滑转换是一种常用策略。这些高次方程能够更好地控制中间状态下的速度变化情况,提供更加自然流畅的动作效果。 - **样条曲线(Spline Curves)** 样条技术允许创建连续可导的整体形状良好曲线序列,适用于需要高度精确性和柔顺性的应用场景下。 #### 实验实践建议 为了加深理解和提高技能水平,可以从以下几个方面入手开展具体项目练习: 1. 利用MATLAB/Simulink平台搭建虚拟环境模拟不同类型的机械结构行为特征; 2. 编写Python脚本调用ROS框架接口操作真实硬件设备执行预定任务流程; 3. 结合开源库资源如MoveIt!探索高级功能选项设置优化方案设计思路等等. ```python import numpy as np def cubic_interpolation(q_start, q_end, t_total=50): """ Perform Cubic Polynomial Trajectory Planning between two configurations. Args: q_start (list): Initial joint angles. q_end (list): Final target joint angles. t_total (int): Total number of steps/time units. Returns: list: List containing interpolated values at each step. """ trajectory = [] for i in range(t_total + 1): s = i / t_total a0 = q_start; a1 = 0; a2 = 3 * (q_end - q_start); a3 = -2 * (q_end - q_start) qi = a0 + a1*s + a2*(s**2) + a3*(s**3) trajectory.append(qi) return trajectory ``` 上述代码片段展示了基于三次多项式的关节角度插值算法实例演示过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值