直方图均衡化对图像信息熵的影响

本文探讨了直方图均衡化对图像信息熵的影响。通过熵理论,分析了均衡化前后图像信息量的关系,指出当直方图均衡过程中灰度级映射非一一对应时,信息熵会减少,而一一对应则保持信息熵不变。
摘要由CSDN通过智能技术生成

\quad 【本文将利用熵理论,定量分析直方图均衡化前后两幅图像的信息量之间关系】

\quad 假设图像一共有 k k k个灰度级: 0 , 1 , 2 , ⋯   , k − 1 0,1,2,\cdots,k-1 0,1,2,k1.直方图均衡过程中,每一个灰度级都被映射到新图像中的一个灰度级,把这个映射记为 f : { 0 , 1 , 2 , ⋯   , k − 1 } → { 0 , 1 , 2 , ⋯   , k − 1 } f:\{0,1,2,\cdots,k-1\}\rightarrow\{0,1,2,\cdots,k-1\} f:{ 0,1,2,,k1}{ 0,1,2,,k1}. 记原图像中对应频率不为0的灰度级的集合为 S : S = { x ∈ { 1 , 2 , ⋯   , k − 1 } ∣ S:S=\{x\in\{1,2,\cdots,k-1\}| S:S={ x{ 1,2,,k1}原图像中灰度级 x x x对应的频率不为0 } \} }. 现在将 S S S中的元素分为2类:

\quad (1)经过映射,只有这一个灰度级被映射到了对应的的灰度级。即灰度级 x x x满足: x ∈ S , f ( x ) = x ^ , ∀ y ∈ S x\in S,f(x)=\hat{x},\forall y\in S xS,f(x)=x^,yS y ≠ x , f ( y ) ≠ x ^ y\neq x,f(y)\neq \hat{x} y̸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值