\quad 【本文将利用熵理论,定量分析直方图均衡化前后两幅图像的信息量之间关系】
\quad 假设图像一共有 k k k个灰度级: 0 , 1 , 2 , ⋯   , k − 1 0,1,2,\cdots,k-1 0,1,2,⋯,k−1.直方图均衡过程中,每一个灰度级都被映射到新图像中的一个灰度级,把这个映射记为 f : { 0 , 1 , 2 , ⋯   , k − 1 } → { 0 , 1 , 2 , ⋯   , k − 1 } f:\{0,1,2,\cdots,k-1\}\rightarrow\{0,1,2,\cdots,k-1\} f:{ 0,1,2,⋯,k−1}→{ 0,1,2,⋯,k−1}. 记原图像中对应频率不为0的灰度级的集合为 S : S = { x ∈ { 1 , 2 , ⋯   , k − 1 } ∣ S:S=\{x\in\{1,2,\cdots,k-1\}| S:S={ x∈{ 1,2,⋯,k−1}∣原图像中灰度级 x x x对应的频率不为0 } \} }. 现在将 S S S中的元素分为2类:
\quad (1)经过映射,只有这一个灰度级被映射到了对应的的灰度级。即灰度级 x x x满足: x ∈ S , f ( x ) = x ^ , ∀ y ∈ S x\in S,f(x)=\hat{x},\forall y\in S x∈S,f(x)=x^,∀y∈S且 y ≠ x , f ( y ) ≠ x ^ y\neq x,f(y)\neq \hat{x} y̸